Swirl Brake Effect on the Rotordynamic Stability of a Shrouded Impeller

[+] Author and Article Information
E. A. Baskharone

Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843

J. Turbomach 121(1), 127-133 (Jan 01, 1999) (7 pages) doi:10.1115/1.2841221 History: Received October 25, 1995; Online January 29, 2008


The swirling motion of the shroud-to-housing leakage flow in pumps is known to have an adverse impact on the impeller rotordynamic stability. Swirl brakes, under such circumstances, would enhance the stability margin by reducing or, ideally, eliminating, the prerotation at the leakage passage inlet station. The numerical analysis outlined in this paper provides a quantitative means of predicting the effectiveness of such devices. The computed results also illustrate the mechanism with which the fluid/rotor interaction, with the aid of a typical brake, is altered towards relative overall rotordynamic stability. This is done through a comparative examination of the pressure perturbation distribution over the shroud surface for a wide range of backward and forward impeller-whirl frequencies. The conclusions in this study are consistent with recent experimental findings and have important design implications.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In