Heat Transfer and Pressure Drop in Pin-Fin Trapezoidal Ducts

[+] Author and Article Information
J.-J. Hwang, D.-Y. Lai, Y.-P. Tsia

Department of Mechanical Engineering, Chung-Hua University, Hsinchu, Taiwan 300

J. Turbomach 121(2), 264-271 (Apr 01, 1999) (8 pages) doi:10.1115/1.2841310 History: Received February 01, 1998; Online January 29, 2008


Experiments are conducted to determine the log-mean averaged Nusselt number and overall pressure-drop coefficient in a pin-fin trapezoidal duct that models the cooling passages in modern gas turbine blades. The effects of pin arrangement (in-line and staggered), flow Reynolds number (6,000 ≦ Re ≦ 40,000) and ratio of lateral-to-total flow rate (0 ≦ ε ≦ 1.0) are examined. The results of smooth trapezoidal ducts without pin arrays are also obtained for comparison. It is found that, for the single-outlet-flow duct, the log-mean averaged Nusselt number in the pin-fin trapezoidal duct with lateral outlet is insensitive to the pin arrangement, which is higher than that in straight-outlet-flow duct with the corresponding pin array. As for the trapezoidal ducts having both outlets, the log-mean averaged Nusselt number has a local minimum value at about ε = 0.3. After about ε ≧ 0.8, the log-mean averaged Nusselt number is nearly independent of the pin configuration. Moreover, the staggered pin array pays more pressure-drop penalty as compared with the in-line pin array in the straight-outlet-flow duct; however, in the lateral-outlet-flow duct, the in-line and staggered pin arrays yield almost the same overall pressure drop.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.





Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In