The Influence of Shrouded Stator Cavity Flows on Multistage Compressor Performance

[+] Author and Article Information
S. R. Wellborn

Rolls-Royce Allison, Indianapolis, IN 46206

T. H. Okiishi

Iowa State University, Ames, IA 50011

J. Turbomach 121(3), 486-497 (Jul 01, 1999) (12 pages) doi:10.1115/1.2841341 History: Received February 01, 1998; Online January 29, 2008


Experiments were performed on a low-speed multistage axial-flow compressor to assess the effects of shrouded stator cavity flows on aerodynamic performance. Five configurations, which involved systematic changes in seal-tooth leakage rates and/or elimination of the shrouded stator cavities, were tested. Rig data indicate increasing seal-tooth leakage substantially degraded compressor performance. For every 1 percent increase in seal-tooth clearance-to-span ratio, the decrease in pressure rise was 3 percent and the reduction in efficiency was 1 point. These observed performance penalties are comparable to those commonly reported for rotor and cantilevered stator tip clearance variations. The performance degradation observed with increased leakage was brought about in two distinct ways. First, increasing seal-tooth leakage directly spoiled the near-hub performance of the stator row in which leakage occurred. Second, the altered stator exit flow conditions, caused by increased leakage, impaired the performance of the next downstream stage by decreasing the work input of the rotor and increasing total pressure loss of the stator. These trends caused the performance of downstream stages to deteriorate progressively. Numerical simulations of the test rig stator flow field were also conducted to help resolve important fluid mechanic details associated with the interaction between the primary and cavity flows. Simulation results show that fluid originating in the upstream cavity collected on the stator suction surface when the cavity tangential momentum was low and on the pressure side when it was high. The convection of cavity fluid to the suction surface was a mechanism that reduced stator performance when leakage increased.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In