1998 Heat Transfer Committee Best Paper Award: Complementary Velocity and Heat Transfer Measurements in a Rotating Cooling Passage With Smooth Walls

[+] Author and Article Information
J. P. Bons

Department of Aeronautics and Astronautics, Air Force Institute of Technology, Wright-Patterson AFB, OH 45433

J. L. Kerrebrock

Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA 02139

J. Turbomach 121(4), 651-662 (Oct 01, 1999) (12 pages) doi:10.1115/1.2836717 History: Received February 01, 1998; Online January 29, 2008


An experimental investigation was conducted on the internal flowfield of a simulated smooth-wall turbine blade cooling passage. The square cross-sectioned passage was manufactured from quartz for optical accessibility. Velocity measurements were taken using Particle Image Velocimetry for both heated and non-heated cases. Thin film resistive heaters on all four exterior walls of the passage allowed heat to be added to the coolant flow without obstructing laser access. Under the same conditions, an infrared detector with associated optics collected wall temperature data for use in calculating local Nusselt number. The test section was operated with radial outward flow and at values of Reynolds number and Rotation number typical of a small turbine blade. The density ratio was 0.27. Velocity data for the non-heated case document the evolution of the Coriolis-induced double vortex. The vortex has the effect of disproportionately increasing the leading side boundary layer thickness. Also, the streamwise component of the Coriolis acceleration creates a considerably thinned side wall boundary layer. Additionally, these data reveal a highly unsteady, turbulent flowfield in the cooling passage. Velocity data for the heated case show a strongly distorted streamwise profile indicative of a buoyancy effect on the leading side. The Coriolis vortex is the mechanism for the accumulation of stagnant flow on the leading side of the passage. Heat transfer data show a maximum factor of two difference in the Nusselt number from trailing side to leading side. A first-order estimate of this heat transfer disparity based on the measured boundary layer edge velocity yields approximately the same factor of two. A momentum integral model was developed for data interpretation, which accounts for coriolis and buoyancy effects. Calculated streamwise profiles and secondary flows match the experimental data well. The model, the velocity data, and the heat transfer data combine to strongly suggest the presence of separated flow on the leading wall starting at about five hydraulic diameters from the channel inlet for the conditions studied.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In