0
RESEARCH PAPERS

A Computational Model for Short-Wavelength Stall Inception and Development in Multistage Compressors

[+] Author and Article Information
Y. Gong, C. S. Tan, K. A. Gordon

Gas Turbine Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139

E. M. Greitzer

United Technologies Research Center, East Hartford, CT 06108

J. Turbomach 121(4), 726-734 (Oct 01, 1999) (9 pages) doi:10.1115/1.2836726 History: Received February 01, 1998; Online January 29, 2008

Abstract

This paper presents a computational model for simulating axial compressor stall inception and development via disturbances with length scales on the order of several (typically about three) blade pitches. The model was designed for multistage compressors in which stall is initiated by these “short-wavelength” disturbances, also referred to as spikes. The inception process described is fundamentally nonlinear, in contrast to the essentially linear behavior seen in so-called “modal stall inception”. The model was able to capture the following experimentally observed phenomena: (1) development of rotating stall via short-wavelength disturbances, (2) formation and evolution of localized short-wavelength stall cells in the first-stage of a mismatched compressor, (3) the switch from long to short-wavelength stall inception resulting from the re-staggering of the inlet guide vane, (4) the occurrence of rotating stall inception on the negatively sloped portion of the compressor characteristic. Parametric investigations indicated that: (1) short-wavelength disturbances were supported by the rotor blade row, (2) the disturbance strength was attenuated within the stators, and (3) the reduction of inter-blade row gaps can suppress the growth of short-wavelength disturbances. It is argued that each local component group (rotor plus neighboring stators) has its own instability point (i.e., conditions at which disturbances are sustained) for short-wavelength disturbances, with the instability point for the compressor set by the most unstable component group.

Copyright © 1999 by The American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In