0
TECHNICAL PAPERS

1999 Turbomachinery Committee Best Paper Award: Development of Advanced Compressor Airfoils for Heavy-Duty Gas Turbines— Part I: Design and Optimization

[+] Author and Article Information
Ulf Köller, Reinhard Mönig

Siemens AG, Power Generation (KWU) D-45466 Mülheim a. d. Ruhr, Germany

Bernhard Küsters, Heinz-Adolf Schreiber

German Aerospace Center, Institute of Propulsion Technology, D-51170 Köln, Germany

J. Turbomach 122(3), 397-405 (Feb 01, 1999) (9 pages) doi:10.1115/1.1302296 History: Received February 01, 1999
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.

References

Johnsen, I., and Bullock, R., 1965, “Aerodynamical Design of Axial-Flow Compressors,” NASA SP-36.
Hobbs,  D., and Weingold,  H., 1984, “Development of Controlled Diffusion Airfoils for Multistage Compressor Application,” ASME J. Eng. Gas Turbines Power, 106, pp. 271–278.
Korn, D., 1975, “Numerical Design of Transonic Cascades,” ERDA Research and Development Report C00-3077-72.
Schmidt, E., 1979, “Computation of Supercritical Compressor and Turbine Cascades With a Design Method for Transonic Flows,” ASME Paper No. 79-GT-30.
Stephens,  H., 1979, “Application of Supercritical Airfoil Technology to Two-Dimensional Compressor Cascades: Comparison of Theoretical and Experimental Results,” AIAA J., 17, No. 6, pp. 594–600.
Rechter,  H., Steinert,  W., and Lehmann,  K., 1985, “Comparison of Controlled Diffusion Airfoils With Conventional NACA 65 Airfoils Developed for Stator Blade Application in a Multistage Axial Compressor,” ASME J. Eng. Gas Turbines Power, 107, pp. 494–498.
Dunker,  R., Rechter,  H., Starken,  H., and Weyer,  H. B., 1984, “Redesign and Performance Analysis of a Transonic Axial Compressor Stator and Equivalent Plane Cascades With Subsonic Controlled Diffusion Blades,” ASME J. Eng. Gas Turbines Power, 106, pp. 279–287.
Sanger,  N. L., 1983, “The Use of Optimization Techniques to Design Controlled Diffusion Compressor Blading,” ASME J. Eng. Power, 105, pp. 256–265.
Sanz,  J., 1988, “Automated Design of Controlled Diffusion Blades,” ASME J. Turbomach., 110, pp. 540–544.
Goel, S., Cofer, J., and Hardev, S., 1996, “Turbine Airfoil Design Optimization,” ASME Paper No. 96-GT-158.
Pierret, S., Van den Braembussche, R., 1997, “Turbomachinery Blade Design Using a Navier–Stokes Solver and Artifical Neural Network,” Reprint from 4th National Congress of Theoretical and Applied Mechanics, May 22–23, Leuven, Belgium.
Lawerenz, M., 1995, “Aerodynamische Optimierung von Strömungsmaschinen unter Verwendung direkter numerischer Optimierungsverfahreh,” Abschlußbericht TURBOTECH-Verbundvorhaben 1.1.2.13.
Schwarz, R., and Spiegel, M., 1995, “Direkte Optimierungsverfahren zur Lösung aerodynamischer Problemstellungen bei Turbomaschinen,” Abschlußbericht TURBOTECH-Verbundvorhaben 1.1.2.14.
Küsters,  B., Schreiber,  H. A., Köller,  U., and Mönig,  R., 1999, “Development of Advanced Compressor Airfoils for Heavy-Duty Gas Turbines: Part II—Experimental and Theoretical Analysis,” ASME J. Turbomach., 122, this issue, pp. 406–415.
Becker, B., Schulenberg, T., and Termuehlen, H., 1995, “The 3A-Series Gas Turbines With HBR Combustors,” ASME Paper No. 95-GT-458.
Steinert,  W., Eisenberg,  B., and Starken,  H., 1991, “Design and Testing of a Controlled Diffusion Airfoil Cascade for Industrial Axial Flow Compressor Application,” ASME J. Turbomach., 113, pp. 583–590.
Giles, M., 1985, “Newton Solution of Steady Two-Dimensional Transonic Flow,” GTL Report No. 186, Oct.
Drela, M., 1986, “Two-Dimensional Transonic Aerodynamic Design and Analysis Using the Euler and Boundary Layer Equations,” GTL Report No. 187, Feb.
Drela, M., 1995, “MISES Implementation of Modified Abu-Ghannam Shaw Transition Criterion,” MISES User’s Guide, MIT.
Pieper, S., and Schulte, J., 1995, “Verlustarme Verdichterauslegung (Experiment I und II),” FVV Forschungsbericht 581.
Schulenberg, T., and Zimmermann, H., 1995, “New Blade Design of Siemens Gas Turbines,” POWER-GEN Europe, May 16–18, Amsterdam.
Mayle,  E., 1991, “The Role of Laminar-Turbulent Transition in Gas Turbine Engines,” ASME J. Turbomach., 113, pp. 509–537.
Halstead,  D. E., Wisler,  D. C., Okiishi,  T. H., Walker,  G. J., Hodson,  H. P., and Shin,  H.-W., 1997, “Boundary Layer Development in Axial Compressors and Turbines: Part 1–4,” ASME J. Turbomach., 119, pp. 114–127, 426–444, 225–237, 128–139.

Figures

Grahic Jump Location
Aerodynamic and geometric cascade parameters
Grahic Jump Location
Design parameters for airfoil generation
Grahic Jump Location
Reproduction of three compressor profiles
Grahic Jump Location
Computational grid for subsonic compressor airfoil
Grahic Jump Location
MISES and experimental Mach number distribution
Grahic Jump Location
Flowchart of optimization algorithm
Grahic Jump Location
Elements for objective function definition
Grahic Jump Location
Geometry of starting and optimized profiles
Grahic Jump Location
Mach number distributions and boundary layer parameters for starting and optimized profiles
Grahic Jump Location
Total pressure losses of starting and optimized profiles
Grahic Jump Location
Geometry of CDA and new airfoils
Grahic Jump Location
Design Mach number distributions of CDA and new airfoils
Grahic Jump Location
Total pressure losses of CDA and new airfoils
Grahic Jump Location
Off-design Mach number distribution of CDA and new airfoils
Grahic Jump Location
Influence of Re and Tu on transition onset
Grahic Jump Location
Influence of Re and Tu on optimized profile geometry

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In