0
TECHNICAL PAPERS

Numerical and Experimental Investigation of Unsteady Flow Interaction in a Low-Pressure Multistage Turbine

[+] Author and Article Information
Wolfgang Höhn, Klaus Heinig

MTU Motoren- und Turbinen-Union, München GmbH, Department of Acoustics and Aeroelasticity, Dachauer Straße 665, D-80995 München, Germany

J. Turbomach 122(4), 628-633 (Feb 01, 2000) (6 pages) doi:10.1115/1.1290397 History: Received February 01, 2000
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.

References

Halstead,  D. E., Wisler,  D. C., Okiishi,  T. H., Walker,  G. J., Hodson,  H. P., and Shin,  H.-W., 1997, “Boundary Layer Development in Axial Compressors and Turbines: Part 1-4,” ASME J. Turbomach., 119, pp. 114–127; 119, pp. 225–237; 119, pp. 426–444; 119, pp. 128–139.
Hodson, H. P., 1998, “Blade Row Interference Effects in Axial Turbomachinery Stages: Blade Row Interactions in Low Pressure Turbines,” VKI Lecture, Brussels, Feb.
Fan,  S., and Lakshminarayana,  B., 1996, “Computation and Simulation of Wake-Generated Unsteady Pressure and Boundary Layers in Cascades, Parts 1 & 2,” ASME J. Turbomach., 118, pp. 96–121.
Sharma, O., 1998, “Blade Row Interference Effects in Axial Turbomachinery Stages,” VKI Lecture, Brussels, Feb.
Eulitz, F., and Engel, K., 1998, “Numerical Investigation of Wake Interaction in a Low Pressure Turbine,” ASME Paper No. 98-GT-563.
Abu-Ghannam,  B., and Shaw,  R., 1980, “Natural Transition of Boundary Layers: The Effects of Turbulence, Pressure Gradient and Flow History,” J. Mech. Eng. Sci., 22, pp. 213–228.
Coupland, J., 1995, “Transition Modelling for Turbomachinery Flows,” ERCOFTAC Bulletin, 24 , pp. 5–8.
Drela, M., 1995, “MISES Implementation of Modified Abu-Ghannam/Shaw Transition Criterion,” MIT Aero-Astro, Feb.
Eulitz, F., Engel, K., Nürnberger, D., Schmidt, S., and Yamamoto, K., 1998, “On Recent Advances of a Massively-Parallel Time-Accurate Navier–Stokes Solver for Unsteady Turbomachinery Flow,” Proc. ECCOMAS. Athens.
Narasimha, R., 1990, “Modelling the Transitional Boundary Layer,” NASA CR-187487; ICASE Report No. 90-90.
Savill, A. M., 1994, “Transition Modelling for Turbomachinery,” Proc. ERCOFTAC Turbomachinery Special Interest Group Seminar and Workshop on 3D Turbomachinery Flow Prediction, Part 2.
Ekaterinaris,  J. A., 1995, “Numerical Investigation of Dynamic Stall of an Oscillating Wing,” AIAA J., 33, No. 10, pp. 1803–1808.
Spalart, P., and Allmaras, S., 1992, “A One-Equation Turbulence Model for Aerodynamic Flows,” AIAA Paper No. 92-0439.
Niehuis R., 1997, “Luftfahrtforschung und -technologie Engine 3E 2010 Programm für zivile MTU-Antriebsprojekte, Turbinen für Triebwerke der unteren Schubklasse Phase A,” Daimler-Benz Aerospace MTU München.
Dorney, D. J., Sondak, D. L., Ciszmas, P. G. A., Saren, V. E., and Savin, N. M., 1999, “Full-Annulus Simulations of Airfoil Clocking in a 1 1/2 Stage Axial Compressor,” ASME Paper No. 98-GT-23.
Huber,  F. W., Johnson,  P. D., Sharma,  O. P., Staubach,  J. B., and Gaddis,  S. W., 1996, “Performance Improvement Through Indexing of Turbine Airfoils: Part 1—Experimental Investigation,” ASME J. Turbomach., 118, pp. 630–635.
Sondak,  D., and Dorney,  D. J., 1999, “Simulation of Vortex Shedding in a Turbine Stage,” ASME J. Turbomach., 121, pp. 428–435.
Valkov,  T. V., and Tan,  C. S., 1999, “Effect of Upstream Rotor Vortical Disturbances on the Time-Average Performance of Axial Compressor Stators: Part 1—Framework of Technical Approach and Wake-Stator Blade Interactions; Part 2—Rotor Tip Vortex/Streamwise Vortex-Stator Blade Interactions,” ASME J. Turbomach., 121, pp. 377–397.
Platzer, M. F., and Tuncer, I. H., 1995, “Analysis of Unsteady Airfoil Interference Effects Using a Zonal Navier–Stokes Solver,” AIAA-95-0307.
Heisler, L., 1999, “E3E, NDT-Rig 448 Bau 03 vorläufige Versuchsergebnisse,” 27.09.99, MTU, München.
Roe,  P., 1981, “Approximative Riemann Solvers, Parameter Vector and Differences Schemes,” J. Comput. Phys., 43, pp. 357–372.
van Leer,  B., 1979, “Towards the Ultimate Conservation Difference Scheme, A Second Order Sequel to Godunov’s Method,” J. Comput. Phys., 32, pp. 101–136.
He,  L., 1993, “New Two-Grid Acceleration Method for Unsteady Navier–Stokes Calculations,” AIAA J. Propul. Power, 9, p. 272.
Saxer,  A. P., and Giles,  M., 1993, “Quasi Three Dimensional Nonreflecting Boundary Conditions for Euler Equations Calculations,” AIAA J. Propul. Power, 9, No. 2, pp. 263–271.
Acton, E., and Cargill, M., 1988, “Non-Reflecting Boundary Conditions for Computations of Unsteady Turbomachinery Flow,” Proc. 4th Int. Symp. Unsteady Aerodynamics and Aeroelasticity of Turbomachines and Propellers, pp. 211–228.
Giles, M., 1991, “UNSFLO: A Numerical Method for the Calculation of Unsteady Flow in Turbomachinery,” GTL-Report 205, MIT-GTL.
Engel, K., Eulitz, F., Pokorny, S., and Faden, M., 1996, “Validation of Different TVD-Schemes for the Calculation of the Unsteady Turbomachinery Flow,” 14. ICNMFD, Bangalore, India.
Boussinesq, T. V., 1877, Mem. Pres, Acad. Sci., 3rd ed. Paris XXIII, p. 46.
Hodson,  H. P., Huntsmann,  L., and Steele,  A. B., 1994, “An Investigation of Boundary Layer Development in a Mutlistage LP Turbine,” ASME J. Turbomach., 116, pp. 375–383.

Figures

Grahic Jump Location
Transformation blade row
Grahic Jump Location
Steady-state surface pressure distribution, Stator 3
Grahic Jump Location
Time-averaged surface pressure distribution, Stator 3
Grahic Jump Location
Entropy, t=T/4, transition model on
Grahic Jump Location
Entropy, t=T/2, transition model on
Grahic Jump Location
Entropy, t=3T/4, transition model on
Grahic Jump Location
Wall shear stress, suction side of Stator 3, transition model off
Grahic Jump Location
Wall shear stress, suction side of Stator 3, transition model on
Grahic Jump Location
Quasi wall shear stress, suction side of Stator 3, experiments
Grahic Jump Location
Time-averaged surface pressure distribution, Stator 2
Grahic Jump Location
Time-averaged surface pressure distribution, Stator 3
Grahic Jump Location
Entropy, t=t0, fully turbulent
Grahic Jump Location
Entropy, t=T/4, fully turbulent
Grahic Jump Location
Entropy, t=T/2, fully turbulent
Grahic Jump Location
Entropy, t=3T/4, fully turbulent
Grahic Jump Location
Entropy, t=t0, transition model on

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In