0
TECHNICAL PAPERS

A Navier–Stokes Analysis of the Stall Flutter Characteristics of the Buffum Cascade

[+] Author and Article Information
Stefan Weber

Max F. Platzer

Department of Aeronautics and Astronautics, Naval Postgraduate School, Monterey, CA 93943-5000

J. Turbomach 122(4), 769-776 (Feb 01, 2000) (8 pages) doi:10.1115/1.1312800 History: Received February 01, 2000
Copyright © 2000 by ASME
Your Session has timed out. Please sign back in to continue.

References

AGARDograh No. 298, 1987, AGARD Manual on Aeroelasticity in Axial-Flow Turbomachines.
Clark,  W. S., and Hall,  K. C., 2000, “A Time-Linearized Navier–Stokes Analysis of Stall Flutter,” ASME J. Turbomach., 122, pp. 467–476.
Hall,  K. C., and Crawley,  E. F., 1993, “Calculation of Unsteady Flows in Turbomachinery Using the Linearized Euler Equations,” AIAA J., 27, pp. 777–787.
Kahl, G., and Klose, A., 1993, “Computation of Time Linearized Transonic Flow in Oscillating Cascades,” ASME Paper No. 93-GT-269.
Montgomery, M. D., and Verdon, J. M., 1995, “A Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows Using an Implicit Wave-Split Scheme,” Proc. 7th Int. Symp. on Unsteady Aerodynamics and Aeroelasticity of Turbomachines, Elsevier Science b.v. Amsterdam.
Baldwin, B. S., and Lomax, H., 1978, “Thin Layer Approximation and Algebraic Model for Separated Turbulent Flow,” AIAA Paper No. 78–257.
Baldwin, B. S., and Barth, T. J., 1990, “A One-Equation Turbulence Transport Model for High Reynolds Number Wall-Bounded Flows,” NASA TM 102847.
Spalart, P. R., and Allmaras, S. R., 1992, “A One-Equation Turbulence Model for Aerodynamic Flows,” AIAA Paper No. 92-0439.
Ekaterinaris,  J. A., and Platzer,  M. F., 1997, “Computational Prediction of the Airfoil Dynamic Stall,” Prog. Aerosp. Sci., 33, pp. 759–846.
Sanz,  W., and Platzer,  M. F., 1998, “On the Navier–Stokes Calculation of Separation Bubbles With a New Transition Model,” ASME J. Turbomach., 120, pp. 36–42.
Weber, S., and Platzer M. F., 1999, “Steady and Dynamic Stall Analysis of the NLR 7301 Airfoil,” ASME Paper No. 99-GT-21.
Weber, S., Jones, K. D., Ekaterinaris, J. A., and Platzer, M. F., 1999, “Transonic Flutter Computations for a 2D Supercritical Wing,” AIAA Paper No. 99-0798.
Eulitz, F., 1999, “Unsteady Turbomachinery: Numerical Simulation and Modelling,” Proc. ODAS 99, ONERA-DLR Aerospace Symposium.
Bakhle, M. A., Srivastava, R., Stefko, G. L., and Janus, J. M., 1996, “Development of an Aeroelastic Code Based on an Euler/Navier–Stokes-Aerodynamic Solver,” ASME Paper No. 96-GT-311.
Chew, J. W., Marshall, J. G., Vahdati, M., and Imegrum, M., 1998, “Part-Speed Flutter Analysis of a Wide-Chord Fan Blade,” Proc. 8th Int. Symp. on Unsteady Aerodynamics and Aeroelasticity of Turbomachines, Stockholm, Kluwer Academic Publishers.
He,  L., 1993, “New Two Grid Acceleration Method for Unsteady Navier–Stokes Calculations,” J. Propul. Power, 9, pp. 272.
Eguchi, T., and Wiedermann, A., 1995, “Numerical Analysis of Unstalled and Stalled Flutter Using a Navier–Stokes-Code with Deforming Meshes,” Proc. 7th Int. Symp. on Unsteady Aerodynamics and Aeroelasticity of Turbomachines, Elsevier Science b.v. Amsterdam.
Abhari,  R. S., and Giles,  M., 1997, “A Navier–Stokes Analysis of Airfoils in Oscillating Transonic Cascades for the Prediction of Aerodynamic Damping,” ASME J. Turbomach., 119, pp. 77–84.
Grüber,  B., and Carstens,  V., 1998, “Computation of the Unsteady Transonic Flow in Harmonically Oscillating Turbine Cascades Taking Into Account Viscous Effects,” ASME J. Turbomach., 120, pp. 104–111.
Weber, S., Benetschik, H., Peitsch, D., and Gallus, H. E., 1997, “A Numerical Approach to Unstalled and Stalled Flutter Phenomena in Turbomachinery Cascades,” ASME Paper No. 97-GT-102.
Weber, S., Gallus, H. E., and Peitsch, D., 1998, “Numerical Solution of the Navier–Stokes Equations for Unsteady Unstalled and Stalled Flow in Turbomachinery Cascades With Oscillating Blades,” Proc. 8th Int. Symp. on Unsteady Aerodynamics and Aeroelasticity of Turbomachines, Stockholm, Kluwer Academic Publishers.
Kato, D., Outa, E., and Chiba, K., 1998, “On Sub-Cell Structure of Deep Rotating Stall in an Axial Compressor,” Proc. 8th Int. Symp. on Unsteady Aerodynamics and Aeroelasticity of Turbomachines, Stockholm, Kluwer Academic Publishers.
Tuncer,  I. H., Weber,  S., and Sanz,  W., 1999, “Investigation of Periodic Boundary Conditions in Multipassage Cascade Flows Using Overset Grids,” ASME J. Turbomach., 121, pp. 341–347.
Carstens, V., and Schmitt, S., 1999, “Comparison of Theoretical and Experimental Data for an Oscillating Transonic Compressor Cascade,” ASME Paper No. 99-GT-408.
Fourmaux, A., 1999, “Blade-Row Interaction in a Transonic Turbine,” Proc. ODAS 99, ONERA-DLR Aerospace Symposium.
Lin, J.-S., and Murthy, D. V., 1999, “Unsteady Aerodynamic Analysis of an Oscillating Cascade at Large Incidence,” ASME Paper No. 99-GT-22.
Buffum,  D. H., Capece,  V. R., and El-Aini,  Y. M., 1998, “Oscillating Cascade Aerodynamics at Large Mean Incidence,” ASME J. Turbomach., 120, pp. 122–130.
Benetschik, H., 1991, “Numerische Berechnung der Trans- und Überschall-Strömung in Turbomaschinen mit Hilfe eines impliziten Relaxationsverfahrens,” Doctorthesis, RWTH Aachen, Germany.
Roe,  P. L., 1981, “Approximative Riemann Solvers, Parameter Vectors and Difference Schemes,” J. Comput. Phys., 43, pp. 357–372.
Harten,  A., 1983, “High Resolution Schemes for Hyperbolic Systems of Conservation Laws,” J. Comput. Phys., 49, pp. 357–393.
van Leer,  B., 1979, “Towards the Ultimative Conservative Difference Scheme V, A Second Order Sequel to Godunov’s Method,” J. Propul. Power, 32, pp. 101–136.
Rai,  M. M., and Chakravarthy,  S. R., 1986, “An Implicit Form of the Osher Upwind Scheme,” AIAA J., 24, No. 5, pp. 735–743.
Chakravarthy,  S. R., 1983, “Euler Equations—Implicit Schemes and Boundary Conditions,” AIAA J., 21, No. 5, pp. 699–705.
Erdos,  J. I., Alzner,  E., and McNally,  W., 1977, “Numerical Solution of Periodic Transonic Flow Through a Fan Stage,” AIAA J., 15, pp. 1559–1568.
Peitsch, D., Gallus, H. E., and Weber, S., 1995, “Computation of Unsteady Transonic 3D-Flow in Turbomachine Bladings,” Proc. 7th Int. Symp. on Unsteady Aerodynamics and Aeroelasticity of Turbomachines, Elsevier Science b.v. Amsterdam.

Figures

Grahic Jump Location
O-type 241×61 point grid for the Buffum cascade
Grahic Jump Location
Steady-state pressure distribution, M=0.5,α=61.1 deg,Re=0.9×106
Grahic Jump Location
Steady-state pressure distribution at leading edge, M=0.5,α=61.1 deg,Re=0.9×106
Grahic Jump Location
Steady-state velocity vectors at leading edge, M=0.5,α=61.1 deg,Re=0.9×106
Grahic Jump Location
Real part of unsteady pressure distribution at low incidence, k=1.2,Φ=180 deg,M=0.5,Re=0.9×106
Grahic Jump Location
Imaginary part of unsteady pressure distribution at low incidence, k=1.2,Φ=180 deg,M=0.5,Re=0.9×106
Grahic Jump Location
Local stability analysis at low incidence, k=1.2,Φ=180 deg,M=0.5,Re=0.9×106
Grahic Jump Location
Local stability analysis at low incidence, k=0.8,Φ=180 deg,M=0.5,Re=0.9×106
Grahic Jump Location
Predicted pitching moment coefficient at low incidence, Φ=180 deg,M=0.5,Re=0.9×106
Grahic Jump Location
Steady-state pressure distribution, M=0.5,α=67.2 deg,Re=0.9×106
Grahic Jump Location
Steady-state Mach number contours, M=0.5,α=67.2 deg,Re=0.9×106
Grahic Jump Location
Real part of unsteady pressure distribution at high incidence, k=1.2,Φ=180 deg,M=0.5,Re=0.9×106
Grahic Jump Location
Imaginary part of unsteady pressure distribution at high incidence, k=1.2,Φ=180 deg,M=0.5,Re=0.9×106
Grahic Jump Location
Predicted unsteady Mach number contours at high incidence, k=1.2,Φ=180 deg,M=0.5,Re=0.9×106
Grahic Jump Location
Local stability analysis at high incidence, k=1.2,Φ=180 deg,M=0.5,Re=0.9×106
Grahic Jump Location
Local stability analysis at high incidence, k=0.8,Φ=180 deg,M=0.5,Re=0.9×106
Grahic Jump Location
Local stability analysis at high incidence, k=0.4,Φ=180 deg,M=0.5,Re=0.9×106
Grahic Jump Location
Predicted unsteady aerodynamic moment coefficient at high incidence, Φ=180 deg,M=0.5,Re=0.9×106

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In