0
TECHNICAL PAPERS

The Influence of Transient Inlet Distortions on the Instability Inception of a Low-Pressure Compressor in a Turbofan Engine

[+] Author and Article Information
Dirk C. Leinhos, Norbert R. Schmid, Leonhard Fottner

Institut für Strahlantriebe, Universität der Bundeswehr München, D-85577 Neubiberg, Germany

J. Turbomach 123(1), 1-8 (Feb 01, 2000) (8 pages) doi:10.1115/1.1330271 History: Received February 01, 2000
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Freeman,  C., Wilson,  A., Day,  I. J., and Swinbanks,  M. A., 1998, “Experiments in Active Control of Stall on an Aeroengine Gas Turbine,” ASME J. Turbomach., 120, pp. 637-647.
Nelson,  E. B., Paduano,  J. D., and Epstein,  A. H., 2000, “Active Stabilization of Surge in an Axi-Centrifugal Turboshaft Engine,” ASME J. Turbomach., 122, pp. 485-493.
Spakovszky,  Z. S., Weigl,  H. J., Paduano,  J. D., van Schalkwyk,  C. M., Suder,  K. L., and Bright,  M. M., 1999, “Rotating Stall Control in a High-Speed Stage With Inlet Distortion: Part I – Radial Distortion,” ASME J. Turbomach., 121, pp. 510-516; “Part II – Circumferential Distortion,” ibid., pp. 517–524.
Weigl,  H. J., Paduano,  J. D., Fréchette,  A. G., Epstein,  A. H., Greitzer,  E. M., Bright,  M. M., and Strazisar,  A. J., 1998, “Active Stabilization of Rotating Stall in a Transonic Single Stage Axial Compressor,” ASME J. Turbomach., 120, pp. 625-636.
Höss, B., 1998, “Zum Einfluß von Eintrittsstörungen auf das dynamische Leistungsverhalten von Turbostrahltriebwerken unter besonderer Berücksichtigung instabiler Verdichterstömungen,” Dissertation, Universität der Bundeswehr München, Germany.
Day,  I. J., Breuer,  T., Escuret,  J., Cherrett,  W., and Wilson,  A., 1999, “Stall Inception and the Prospects for Active Control in Four High Speed Compressors,” ASME J. Turbomach., 121, pp. 18-27.
Hoying, D. A., 1993, “Stall Inception in a Multistage High Speed Axial Compressor,” Paper No. AIAA-93-2238.
Jahnen, W., Peters, T., and Fottner, L., 1999, “Stall Inception in a 5-Stage HP-Compressor With Increased Load Due to Inlet Distortions,” ASME Paper No. 99-GT-440.
Leinhos, D., Höss, B., and Fottner, L., 1998, “Rotating Stall Inception With Inlet Distortion in the Low Pressure Compressor of a Turbofan Engine,” Proc. 19th AIMS Symposium, Garmisch-Partenkirchen, Germany, May 4-7.
Wilson,  A. G., and Freeman,  C., 1994, “Stall Inception and Development in an Axial Flow Aeroengine,” ASME J. Turbomach., 116, pp. 217-225.
Koelle, D. E., and Kuczera, H., 1990, “SÄNGER Space Transportation System–Progress Report 1990,” 41st IAF Congress, Dresden, Germany, Oct., IAF Paper No. 90-175.
Schmid, N. R., Leinhos, D. C., and Fottner, L., 2000, “Steady Performance Measurements of a Turbofan Engine Under the Presence of Inlet Distortions With Co- and Counter-Rotating Swirl From the Intake Diffuser for Hypersonic Flight,” ASME Paper No. 2000-GT-11.
Höss,  B., Leinhos,  D. C., and Fottner,  L., 2000, “Stall Inception in the Compressor System of a Turbofan Engine,” ASME J. Turbomach., 122, pp. 32-44.
Herpel, Th., and Fottner, L., 1993, “A System for Monitoring, Measurement and Analysis of Transient Performance and Stall Phenomena of Gas Turbine Engines,” ICIASF ’93 Record, IEEE Publication 93CH3199-7.
McDougall,  N. M., Cumpsty,  N. A., and Hynes,  T. P., 1990, “Stall Inception in Axial Compressors,” ASME J. Turbomach., 112, pp. 116-125.
Garnier,  V. H., Epstein,  A. H., and Greitzer,  E. M., 1991, “Rotating Waves as a Stall Inception Indication in Axial Compressors,” ASME J. Turbomach., 113, pp. 290-302.
Tryfonidis,  M., Etchevers,  O., Paduano,  J. D., Epstein,  A. H., and Hendricks,  G. J., 1995, “Pre-Stall Behavior of Several High-Speed Compressors,” ASME J. Turbomach., 117, No. 1, pp. 62-80.

Figures

Grahic Jump Location
TWE of SFT’s first harmonic, nθ LPC=95 percent, CO, transient
Grahic Jump Location
The wca of level 9 (top) and 13 (bottom) at sensor 5 against time, nθ LPC=80 percent, COUNTER, transient
Grahic Jump Location
TWE of SFT’s first harmonic, nθ LPC=95 percent, COUNTER, transient
Grahic Jump Location
DPSD of SFT’s second harmonic, nθ LPC=80 percent, CO, transient
Grahic Jump Location
The wca of level 11 (top) and 12 (bottom) at sensor 3 against time, nθ LPC=95 percent, COUNTER, steady
Grahic Jump Location
SFT of first harmonic, nθ LPC=76 percent, COUNTER, steady
Grahic Jump Location
The wca of level 11 at sensor 1 against time, nθ LPC =53 percent, COUNTER, steady
Grahic Jump Location
The wca of level 13 at sensor 13 against time, nθ LPC=95 percent, CO, steady
Grahic Jump Location
PSD of SFT’s second harmonic, nθ LPC=79.5 percent, CO, steady
Grahic Jump Location
Time series of static pressure, nθ LPC=53 percent, CO, steady
Grahic Jump Location
Cutaway of the LPC compressor map
Grahic Jump Location
Wavelet transformation and statistical evaluation
Grahic Jump Location
Sensor position relative to the CO (top) and COUNTER (bottom) distortion (viewed upstream)
Grahic Jump Location
Positions of miniature pressure probes
Grahic Jump Location
LARZAC 04 C5 design point performance data
Grahic Jump Location
Inlet distortion generator (CO configuration)
Grahic Jump Location
Propulsion system of a hypersonic aircraft

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In