0
TECHNICAL PAPERS

An Experimental Study of the Effect of Wake Passing on Turbine Blade Film Cooling

[+] Author and Article Information
James D. Heidmann, Barbara L. Lucci

NASA Glenn Research Center, Cleveland, OH

Eli Reshotko

Case Western Reserve University, Department of Mechanical and Aerospace Engineering, Cleveland, OH

J. Turbomach 123(2), 214-221 (Feb 01, 1997) (8 pages) doi:10.1115/1.1354621 History: Received February 01, 1997
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Goldstein,  R. J., 1971, “Film Cooling,” Advances in Heat Transfer, 7, pp. 321–379.
Heidmann, J. D., 1996, “The Effect of Wake Passing on Turbine Blade Film Cooling,” NASA TM-107380 and Ph.D. Dissertation, Case Western Reserve University (1997).
Heidmann,  J. D., Rigby,  D. L., and Ameri,  A. A., 2000, “A Three-Dimensional Coupled Internal/External Simulation of a Film-Cooled Turbine Vane,” ASME J. Turbomach., 122, pp. 348–359.
Rigby, M. J., Johnson, A. B., and Oldfield, M. L. G., 1990, “Gas Turbine Rotor Blade Film Cooling With and Without Simulated NGV Shock Waves and Wakes,” ASME Paper No. 90-GT-78.
Ou,  S., Han,  J.-C., Mehendale,  A. B., and Lee,  C. P., 1994, “Unsteady Wake Over a Linear Turbine Blade Cascade With Air and CO2 Film Injection: Part I-Effect on Heat Transfer Coefficients,” ASME J. Turbomach., 116, pp. 721–729.
Mehendale,  A. B., Han,  J.-C., Ou,  S., and Lee,  C. P., 1994, “Unsteady Wake Over a Linear Turbine Blade Cascade With Air and CO2 Film Injection: Part II-Effect on Film Effectiveness and Heat Transfer Distributions,” ASME J. Turbomach., 116, pp. 730–737.
Funazaki, K., Koyabu, E., and Yamawaki, S., 1996, “Effect of Periodic Wake Passing on Film Effectiveness of Inclined Discrete Cooling Holes Around the Leading Edge of a Blunt Body,” ASME Paper No. 96-GT-207.
Du,  H., Han,  J. C., and Ekkad,  S. V., 1998, “Effect of Unsteady Wake on Detailed Heat Transfer Coefficient and Film Effectiveness Distributions for a Gas Turbine Blade,” ASME J. Turbomach., 120, pp. 808–817.
Du,  H., Ekkad,  S. V., and Han,  J. C., 1999, “Effect of Unsteady Wake With Trailing Edge Ejection on Film Cooling Performance for a Gas Turbine Blade,” ASME J. Turbomach., 121, pp. 448–455.
Teng,  S., Sohn,  D. K., and Han,  J. C., 2000, “Unsteady Wake Effect on Film Temperatures and Effectiveness Distributions for a Gas Turbine Blade,” ASME J. Turbomach., 122, pp. 340–347.
Seo,  H. J., Lee,  J. S., and Ligrani,  P. M., 1999, “Effects of Bulk Flow Pulsations on Film Cooling From Different Length Injection Holes at Different Blowing Ratios,” ASME J. Turbomach., 121, pp. 542–550.
Ekkad,  S. V., Han,  J. C., and Du,  H., 1998, “Detailed Film Cooling Measurements on a Cylindrical Leading Edge Model: Effect of Free-Stream Turbulence and Coolant Density,” ASME J. Turbomach., 120, pp. 799–807.
Ames,  F. E., 1998, “Aspects of Vane Film Cooling With High Turbulence: Part I—Heat Transfer,” ASME J. Turbomach., 120, pp. 768–776.
Ames,  F. E., 1998, “Aspects of Vane Film Cooling With High Turbulence: Part II—Adiabatic Effectiveness,” ASME J. Turbomach., 120, pp. 777–784.
Kohli,  A., and Bogard,  D. G., 1998, “Effects of Very High Free-Stream Turbulence on the Jet-Mainstream Interaction in a Film Cooling Flow,” ASME J. Turbomach., 120, pp. 785–790.
Dring,  R. P., Blair,  M. F., and Joslyn,  H. D., 1980, “An Experimental Investigation of Film Cooling on a Turbine Rotor Blade,” ASME J. Eng. Power, 102, pp. 81–87.
Takeishi,  K., Aoki,  S., Sato,  T., and Tsukagoshi,  K., 1992, “Film Cooling on a Gas Turbine Rotor Blade,” ASME J. Turbomach., 114, pp. 828–834.
Abhari, R. S. and Epstein, A. H., 1992, “An Experimental Study of Film Cooling in a Rotating Transonic Turbine,” ASME Paper No. 92-GT-201.
Funazaki, K., Kitazawa, T., Koizumi, K., and Tanuma, T., 1997, “Studies on Wake-Disturbed Boundary Layers Under the Influences of Favorable Pressure Gradient and Free-Stream Turbulence Part I: Experimental Setup and Discussions on Transition Model,” ASME Paper No. 97-GT-451.
Funazaki, K., Kitazawa, T., Koizumi, K., and Tanuma, T., 1997, “Studies on Wake-Disturbed Boundary Layers Under the Influences of Favorable Pressure Gradient and Free-Stream Turbulence Part II: Effect of Freestream Turbulence,” ASME Paper No. 97-GT-452.
Chakka,  P., and Schobeiri,  M. T., 1999, “Modeling Unsteady Boundary Layer Transition on a Curved Plate Under Periodic Unsteady Flow Conditions: Aerodynamic and Heat Transfer Investigations,” ASME J. Turbomach., 121, pp. 88–97.
Kim,  K., and Crawford,  M. E., 2000, “Prediction of Transitional Heat Transfer Characteristics of Wake-Affected Boundary Layers,” ASME J. Turbomach., 122, pp. 78–87.
Dorney,  D. J., Davis,  R., and Edwards,  D., 1992, “Investigation of Hot Streak Migration and Film Cooling Effects on Heat Transfer in Rotor/Stator Interacting Flows,” N00140-88-C-0677-Report 1, UTRC Report 91-29.
Simoneau, R. J., Morehouse, K. A., VanFossen, G. J., and Behning, F. P., 1984, “Effect of a Rotor Wake on Heat Transfer From a Circular Cylinder,” NASA TM-83613.
O’Brien,  J. E., and Capp,  S. P., 1989, “Two-Component Phase-Averaged Turbulence Statistics Downstream of a Rotating Spoked- Wheel Wake Generator,” ASME J. Turbomach., 111, pp. 475–482.
Heidmann, J. D., 1995, “A Numerical Study of the Effect of Wake Passing on Turbine Blade Film Cooling,” NASA TM-107077 and AIAA-95-3044.
Chima,  R. V., and Yokota,  J. W., 1990, “Numerical Analysis of Three-Dimensional Viscous Flows in Turbomachinery,” AIAA J., 28, No. 5, pp. 798–806.
Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1960, Transport Phenomena, Wiley, New York.
Takeishi,  K., Matsuura,  M., Aoki,  S., and Sato,  T., 1990, “An Experimental Study of Heat Transfer and Film Cooling on Low Aspect Ratio Turbine Nozzles,” ASME J. Turbomach., 112, pp. 477–487.
Ito,  S., Goldstein,  R. J., and Eckert,  E. R. G., 1978, “Film Cooling of a Gas Turbine Blade,” ASME J. Eng. Power, 100, pp. 476–481.

Figures

Grahic Jump Location
Time- and span-average film effectiveness
Grahic Jump Location
Film hole and gauge arrangement
Grahic Jump Location
Rotor-wake facility schematic
Grahic Jump Location
Steady span-average film effectiveness, M=1.0
Grahic Jump Location
Steady span-average Nusselt number, M=1.0
Grahic Jump Location
Local film effectiveness, CO2,M=1.0,x/d=−8.0
Grahic Jump Location
Span-average film effectiveness, CO2,M=1.0,St=0

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In