0
TECHNICAL PAPERS

High-Resolution Measurements of Local Heat Transfer Coefficients From Discrete Hole Film Cooling

[+] Author and Article Information
S. Baldauf, A. Schulz, S. Wittig

Lehrstuhl und Institut für Thermische Strömungsmaschinen, Universität Karlsruhe (TH), 76128 Karlsruhe, Germany

J. Turbomach 123(4), 749-757 (Feb 01, 1999) (9 pages) doi:10.1115/1.1387245 History: Received February 01, 1999
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Lee,  S. W., Lee,  J. S., and Ro,  S. T., 1994, “Experimental Study on the Flow Characteristic of Streamwise Inclined Jets in Crossflow on Flat Plate,” ASME J. Turbomach., 116, pp. 97–116.
Pietrzyk,  J. R., Bogard,  D. G., and Crawford,  M. E., 1989, “Hydrodynamic Measurements of Jet in Crossflow for Gas Turbine Film Cooling Applications,” ASME J. Turbomach., 111, pp. 139–145.
Pietrzyk,  J. R., Bogard,  D. G., and Crawford,  M. E., 1990, “Effect of Density Ratio on the Hydrodynamics of Film Cooling,” ASME J. Turbomach., 112, pp. 437–443.
Burd,  S. W., Kaszeta,  R. W., and Simon,  T. W., 1998, “Measurements in Film Cooling Flows: Hole L/D and Turbulence Intensity Effects,” ASME J. Turbomach., 120, pp. 791–798.
Thole,  K., Gritsch,  M., Schulz,  A., and Wittig,  S., 1998, “Flow Field Measurements for Film-Cooling Holes With Expanded Exits,” ASME J. Turbomach., 120, pp. 327–336.
Rydholm,  H. A., 1998, “An Experimental Investigation of the Velocity and Temperature Fields of Cold Jets Injected Into a Hot Crossflow,” ASME J. Turbomach., 120, pp. 320–326.
Kohli,  A., and Bogard,  D. G., 1997, “Adiabatic Effectiveness, Thermal Fields, and Velocity Fields for Film Cooling With Large Angle Ejection,” ASME J. Turbomach., 119, pp. 352–358.
Sen,  B., Schmidt,  D. L., and Bogard,  D. G., 1996, “Film Cooling With Compound Angle Holes: Heat Transfer,” ASME J. Turbomach., 118, pp. 800–806.
Schmidt,  D. L., Sen,  B., and Bogard,  D. G., 1996, “Film Cooling With Compound Angle Holes: Adiabatic Effectiveness,” ASME J. Turbomach., 118, pp. 807–813.
Bell,  C. M., Hamakawa,  H., and Ligrani,  P. M., 2000, “Film Cooling From Shaped Holes,” ASME J. Heat Transfer, 122, pp. 224–232.
Sgarzi, O., and Leboeuf, F., 1997, “Analysis of Vortices in Three-Dimensional Jets Introduced in a Cross-Flow Boundary Layer,” ASME Paper No. 97-GT-517.
Walters,  D. K., and Leylek,  J. H., 2000, “A Detailed Analysis of Film Cooling Physics Part I: Streamwise Ejection With Cylindrical Holes,” ASME J. Turbomach., 122, pp. 102–112.
Baldauf,  S., Schulz,  A., and Wittig,  S., 2001, “High-Resolution Measurements of Local Effectiveness by Discrete Hole Film Cooling,” ASME J. Turbomach., 123, No. 4.
Metzger,  D. E., and Fletcher,  D. D., 1971, “Evaluation of Heat Transfer for Film-Cooled Turbine Components,” ASME J. Eng. Power, 8, pp. 181–184.
Choe, H., Kays, W. M., and Moffat, R. J., 1974, “The Superposition Approach to Film-Cooling,” ASME Paper 74-WA/HT-27.
Jones, T. V., 1991, “Definition of Heat Transfer Coefficients in the Turbine Situation,” in: Turbomachinery: Latest Developments in a Changing Scene, Paper C423/046, Proc. IMechE, pp. 201–206.
Gritsch, M., Baldauf, S., Martiny, M., Schulz, A., and Wittig, S., 1999, “The Superposition Approach to Local Heat Transfer Coefficients in High Density Ratio Film Cooling Flows,” ASME Paper No. 99-GT-168.
Kays, W. M., and Crawford, M. E., 1980, Convective Heat and Mass Transfer, McGraw-Hill, New York.
Loftus,  P. J., and Jones,  T. V., 1983, “The Effect of Temperature Ratios on the Film Cooling Process,” ASME J. Eng. Power, 105, pp. 615–620.
Forth, C. J. P, Loftus, P. J., and Jones, T. V., 1985, “The Effect of Density Ratio on the Film Cooling of a Flat Plate,” Heat Transfer and Cooling in Gas Turbines, AGARD-CP-390, Paper 10.
Forth, C. J. P., and Jones, T. V., 1986, “Scaling Parameters in Film Cooling,” Proc. 8th Int. Heat Transfer Conf., Vol. 3, pp. 1271–1276.
Teekaram,  A. J. H., Forth,  C. J. P., and Jones,  T. V., 1989, “The Use of Foreign Gas to Simulate the Effects of Density Ratios in Film Cooling,” ASME J. Turbomach., 111, pp. 57–62.
Kumada, M., Hirata, M., and Kasagi, N., 1981, “Studies of a Full-Coverage Film Cooling. Part 2: Measurement of Local Heat Transfer Coefficient,” ASME Paper No. 81-GT-38.
Goldstein,  R. J., and Taylor,  J. R., 1982, “Mass Transfer in the Neighborhood of Jets Entering a Crossflow,” ASME J. Heat Transfer, 104, pp. 715–721.
Cho,  H. H., and Goldstein,  R. J., 1995, “Heat (Mass) Transfer and Film Cooling Effectiveness With Injection Through Discrete Holes: Part II—On the Exposed Surface,” ASME J. Turbomach., 117, pp. 451–460.
Ammari,  H., Hay,  N., and Lampard,  D., 1990, “The Effect of Density Ratio on the Heat Transfer Coefficient From a Film-Cooled Flat Plate,” ASME J. Turbomach., 112, pp. 444–450.
Ekkad,  S. V., Zapata,  D., and Han,  J. C., 1997, “Heat Transfer Coefficients Over a Flat Surface With Air and CO2 Injection Through Compound Angle Holes Using a Transient Liquid Crystal Image Method,” ASME J. Turbomach., 119, pp. 580–586.
Goldstein,  R. J., Jin,  P., and Olson,  R. L., 1999, “Film Cooling Effectiveness and Mass/Heat Transfer Downstream of One Row of Discrete Holes,” ASME J. Turbomach., 121, pp. 225–232.
Gritsch, M., Schulz, A., and Wittig, S., 1998, “Heat Transfer Coefficient Measurements of Film-Cooling Holes With Expanded Exits,” ASME Paper No. 98-GT-28.
Martiny, M., Schiele, R., Gritsch, M., Schulz, A., and Wittig, S., 1996, “In Situ Calibration for Quantitative Infrared Thermography,” Quirtë96 Eurotherm Seminar No. 50, Stuttgart, Germany, Sept. 2–5.
Jacobsen, K., 1987, “Experimentelle Untersuchungen zum Durchflufl und Wärmeübergang in Durchblick- und Stufenlabyrinthen,” Dissertation, Institut für Thermische Strömungsmaschinen, Universität Karlsruhe.
Gnielinski, V., 1975, Forschung im Ingenieurswesen 41, No. 1.

Figures

Grahic Jump Location
Extended hot wind tunnel scheme with cooling circuit
Grahic Jump Location
Test section for heat transfer measurements
Grahic Jump Location
FE model of the test plate, a=60 deg,s/D=3
Grahic Jump Location
Local hf resulting from a set of surface heat transfer measurements at varying dimensionless wall temperature conditions
Grahic Jump Location
Local heat transfer coefficient distributions for typical application conditions
Grahic Jump Location
Characteristic heat transfer patterns for typical application conditions at high density ratios
Grahic Jump Location
Effect of the blowing angle on local heat transfer coefficient distributions
Grahic Jump Location
Effect of the hole spacing on local heat transfer coefficient distributions
Grahic Jump Location
Effect of the density ratio on the local heat transfer coefficient distributions
Grahic Jump Location
Spatially averaged net heat flux reduction

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In