0
TECHNICAL PAPERS

Effects of Reynolds Number and Pressure Ratio on Leakage Loss and Heat Transfer in a Stepped Labyrinth Seal

[+] Author and Article Information
K. Willenborg, S. Kim, S. Wittig

Lehrstuhl und Institut für Thermische Strömungsmaschinen, Universität Karlsruhe, 76128 Karlsruhe, Germany

J. Turbomach 123(4), 815-822 (Feb 01, 2001) (8 pages) doi:10.1115/1.1397304 History: Received February 01, 2001
Copyright © 2001 by ASME
Your Session has timed out. Please sign back in to continue.

References

Zimmermann,  H., 1990, “Some Aerodynamic Aspects of Engine Secondary Air Systems,” ASME J. Eng. Gas Turbines Power, 112, pp. 223–228.
Zimmermann, H., Kammerer, A., and Wolff, K. H., 1994, “Performance of Worn Labyrinth Seals,” ASME Paper No. 94-GT-131.
Martin,  H. M., 1908, “Labyrinth Packings,” Engineering, 85, pp. 33–36.
Stodola, A., 1922, Dampf- und Gasturbinen, 5. Auflage, Springer-Verlag, Berlin.
Egli,  A., 1935, “The Leakage of Steam Through Labyrinth Seals,” Trans. ASME, 57, pp. 115–122.
Kearton,  W. J., and Keh,  T. H., 1952, “Leakage of Air Through Labyrinth Glands of Staggered Type,” Proc. Inst. Mech. Eng., 166, pp. 180–188.
Komotori,  K., 1961, “Probleme bei Labyrinth-Stopfbüchsen,” Proc. Fujihara Memorial Faculty of Eng., Keio Univ., 14, No. 54.
Trutnovsky, K., and Komotori, K., 1981, Berührungsfreie Dichtungen, VDI-Verlag, Düsseldorf.
Stocker, H. L., 1978, “Determining and Improving Labyrinth Seal Performance in Current and Advanced High Performance Gas Turbines,” AGARD-CP-237 Conf. Proc., pp. 13/1–13/22.
Wittig, S., Schelling U., Jacobsen, K., and Kim, S., 1987, “Numerical Predictions and Measurements of Discharge Coefficients in Labyrinth Seals,” ASME Paper No. 87-GT-188.
Morrison,  G. L., Johnson,  M. C., and Tatterson,  G. B., 1991, “3-D Laser Anemometer Measurements in a Labyrinth Seal,” ASME J. Eng. Gas Turbines Power, 113, pp. 119–125.
Prasad, B. V. S. S. S., Sethu Manavalan, V., Nanjunda Rao, N., 1997, “Computational and Experimental Investigations of Straight-Through Labyrinth Seals,” ASME Paper No. 97-GT-326.
Rhode, D. L., Adams, R. G., 2000, “Computed Effect of Rub-Groove Size on Stepped Labyrinth Seal Performance,” ASME Paper No. 2000-GT-0292.
Schramm, V., Willenborg, K., Kim, S., and Wittig, S., 2000, “Influence of a Honeycomb Facing on the Flow Field and Discharge Behavior of a Stepped Labyrinth Seal,” ASME J. Eng. Gas Turbines Power, in press.
Zimmermann, H., and Wolff, K. H., 1998, “Air System Correlations, Part 1: Labyrinth Seals,” ASME Paper No. 98-GT-206.
Wittig,  S., Dörr,  L., and Kim,  S., 1983, “Scaling Effects on Leakage Losses in Labyrinth Seals,” ASME J. Eng. Power, 105, pp. 305–309.
Sheinin,  E. I., 1961, “Experimentelle Untersuchung des Wärmübergangs in der Zone der Endabdichtungen von Gasturbinen (Russian),” Energomashinostroenie, 1, pp. 25–27.
Shvets,  I. T., Khavin,  V. Y., and Dyban,  E. P., 1963, “Heat Exchange in Labyrinth Seals of Turbine Rotor (Russian),” Energomashinostroenie, 12, pp. 8–12.
Kapinos,  V. M., and Gura,  L. A., 1970, “Investigation of Heat Transfer in Labyrinth Glands on Static Models,” Thermal Eng., 17, No. 11, pp. 54–56.
Metzger, D. E., and Bunker, R. S., 1985, “Heat Transfer for Flow Through Simulated Labyrinth Seals,” presented at the Symposium on Transport Phenomena in Rotating Machinery, Honolulu, USA.
Wittig,  S., Jacobsen,  K., Schelling,  U., and Kim,  S., 1988, “Heat Transfer in Stepped Labyrinth Seals,” ASME J. Eng. Gas Turbines Power, 110, pp. 63–69.
Willenborg, K., Schramm, V., Kim, S., and Wittig, S., 2000, “Influence of a Honeycomb Facing on the Heat Transfer in a Stepped Labyrinth Seal,” ASME J. Eng. Gas Turbines Power, in press.
Kapinos,  V. M., and Gura,  L. A., 1973, “Heat Transfer of a Stepped Labyrinth Seal,” Thermal Eng., 20, No. 6, pp. 28–32.
Waschka,  W., Wittig,  S., and Kim,  S., 1992, “Influence of High Rotational Speeds on the Heat Transfer and Discharge Coefficients in Labyrinth Seals,” ASME J. Turbomach., 114, pp. 462–468.
Waschka, W., Scherer, T., Kim, S., and Wittig, S. 1992, “Study of Heat Transfer and Leakage in High Rotating Stepped Labyrinth Seals,” ISROMAC-4, pp. 326–334.
Kline,  S. J., and McClintock,  F. A., 1953, “Describing Uncertainties in Single-Sample Experiments,” Mech. Eng. (Am. Soc. Mech. Eng.), 75, pp. 3–8.
Johansen,  F. C., 1930, “Flow Through Pipe Orifices at Low Reynolds Numbers,” Proc. R. Soc. London, Ser. A, 126, pp. 231–245.
Bell,  K. J., and Bergelin,  O. P., 1959, “Flow Through Annular Orifices,” Trans. ASME, 79, pp. 593–601.

Figures

Grahic Jump Location
Labyrinth seal geometry: l/t=0.46,H/t=0.14,b/t=0.047,s/t=0.043[[ellipsis]]0.114,t(1×)=7 mm,t(4×)=28 mm
Grahic Jump Location
Labyrinth seal test facility
Grahic Jump Location
Test sections with instrumentation
Grahic Jump Location
Discharge coefficients, s/b=0.909
Grahic Jump Location
Discharge coefficients, s/b=1.515
Grahic Jump Location
Discharge coefficients, s/b=2.424
Grahic Jump Location
Flow coefficient α of a sharp-edged orifice as a function of Reynolds number (Egli 5)
Grahic Jump Location
Coefficients of discharge for annular orifices (Bell et al. 28)
Grahic Jump Location
Local Nusselt numbers at the stator, s/b=0.909
Grahic Jump Location
Local Nusselt numbers at the rotor, s/b=0.909
Grahic Jump Location
Local Nusselt numbers at the stator, s/b=2.424
Grahic Jump Location
Local Nusselt numbers at the rotor, s/b=2.424
Grahic Jump Location
Mean Nusselt numbers for the stator
Grahic Jump Location
Mean Nusselt numbers for the rotor

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In