Unsteady Flow/Quasi-Steady Heat Transfer Computations on a Turbine Rotor and Comparison With Experiments

[+] Author and Article Information
T. Korakianitis

Department of Mechanical Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom

P. Papagiannidis

Frigoglass, Patras, Greece

N. E. Vlachopoulos

Panafon SA, Athens, Greece

J. Turbomach 124(1), 152-159 (Aug 01, 2001) (8 pages) doi:10.1115/1.1405419 History: Received March 01, 1993; Revised August 01, 2001
Copyright © 2002 by ASME
Your Session has timed out. Please sign back in to continue.


Erdos, J. I., and Lzner, E., 1977, “Computation of Unsteady Transonic Flows Through Rotating and Stationary Cascades,” NASA-CR-2900.
Koya,  M., and Kotake,  S., 1985, “Numerical Analysis of Fully Three-Dimensional Periodic Flows Through a Turbine Stage,” ASME J. Fluids Eng., 107, pp. 945–952.
Fourmaux, A., 1986, “Unsteady Flow Calculation in Cascades,” ASME Paper No. 86-GT-178.
Lewis,  J. P., Delaney,  R. A., and Hall,  E. J., 1989, “Numerical Prediction of Turbine Vane-Blade Aerodynamic Interaction,” ASME J. Turbomach., 111, pp. 387–393.
Rai,  M. M., and Madavan,  N. K., 1990, “Multi-Airfoil Navier–Stokes Simulations of Turbine Rotor–Stator Interaction,” ASME J. Turbomach., 112, pp. 377–384.
Giles,  M. B., 1988, “Calculation of Unsteady Wake/Rotor Interactions,” J. Propul. Power, 4, No. 4, pp. 356–362.
Giles,  M. B., and Haimes,  R., 1993, “Validation of a Numerical Method for Unsteady Flow Calculations,” ASME J. Turbomach., 115, pp. 110–117.
Richardson, S., 1990, “Analysis of Unsteady Rotor–Stator Interaction Using a Viscous Explicit Method,” AIAA Paper No. 90-0342.
Hodson,  H. P., 1985, “An Inviscid Blade-to-Blade Prediction of a Wake-Generated Unsteady Flow,” ASME J. Eng. Gas Turbines Power 107, pp. 337–344.
Scott,  J. N., and Hankey,  W. L., 1986, “Navier–Stokes Solutions of Unsteady Flow in a Compressor Rotor,” ASME J. Turbomach., 108, pp. 206–215.
Korakianitis, T., 1987, “A Design Method for the Prediction of Unsteady Forces on Subsonic, Axial Gas-Turbine Blades,” Doctoral Dissertation Sc.D. in Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA.
Korakianitis,  T., 1992, “On the Prediction of Unsteady Forces on Gas Turbine Blades: Part 1—Description of the Approach,” ASME J. Turbomach., 114, pp. 114–122.
Korakianitis,  T., 1992, “On the Prediction of Unsteady Forces on Gas Turbine Blades: Part 2—Analysis of the Results,” ASME J. Turbomach., 114, pp. 123–131.
Korakianitis,  T., 1993, “On the Propagation of Viscous Wakes and Potential-Flow in Axial-Turbine Cascades,” ASME J. Turbomach., 115, pp. 118–127.
Korakianitis,  T., 1993, “The Influence of Stator-Rotor Gap on Axial-Turbine Unsteady Forcing Functions,” AIAA J., 31, No. 7, pp. 1256–1264, July.
Hwang,  C. J., and Liu,  J. L., 1993, “Analysis of Steady and Unsteady Turbine Cascade Flows by a Locally Implicit Hybrid Algorithm,” ASME J. Turbomach., 115, pp. 699–706.
Manwaring,  S. R., and Wisler,  D. C., 1993, “Unsteady Aerodynamics and Gust Response in Compressors and Turbines,” ASME J. Turbomach., 115, pp. 724–740.
Gallus,  H. E., Grollius,  H., and Lambertz,  J., 1982, “The Influence of Blade Number Ratio and Blade Row Spacing on Axial-Flow Compressor Stator Blade Dynamic Load and Stage Sound Pressure Level,” ASME J. Fluids Eng., 104, pp. 633–641.
Dring,  R. P., Joslyn,  H. D., Hardin,  L. W., and Wagner,  J. H., 1982, “Turbine Rotor-Stator Interaction,” ASME J. Eng. Power, 104, pp. 729–742.
Binder,  A., Forster,  W., Mach,  K., and Rogge,  H., 1987, “Unsteady Flow Interaction Caused by Stator Secondary Vortices in a Turbine Rotor,” ASME J. Turbomach., 109, pp. 251–257.
Dunn,  M. G., 1990, “Phase and Time-Resolved Measurements of Unsteady Heat-Transfer and Pressure in a Full-Stage Rotating Turbine,” ASME J. Turbomach., 112, pp. 531–538.
Dunn,  M. G., Kim,  J., Civinskas,  K. C., and Boyle,  R. J., 1994, “Time-Averaged Heart Transfer and Pressure Measurements and Comparison With Prediction for a Two-Stage Turbine,” ASME J. Turbomach., 116, pp. 14–22.
Ashworth,  D. A., Lagraff,  J. E., Schultz,  D. L., and Grindrod,  K. J., 1985, “Unsteady Aerodynamic and Heat Transfer Processes in a Transonic Turbine Stage,” ASME J. Eng. Power, 107, pp. 1022–1031.
Blair,  M. F., 1994, “An Experimental Study of Heat Transfer in a Large-Scale Turbine Rotor Passage,” ASME J. Turbomach., 116, pp. 1–13.
Liu, X., and Rodi, W., 1992, “Measurement of Unsteady Flow and Heat Transfer in a Linear Turbine Cascade,” ASME Paper No. 92-GT-323.
Magari,  P. J., and Legraff,  L. E., 1994, “Wake-Induced Unsteady Stagnation-Region Heat Transfer Measurements,” ASME J. Turbomach., 116, pp. 29–38.
Krouthen, B., and Giles, M. B., 1988, “Numerical Investigation of Hot Streaks in Turbines,” AIAA Paper No. 88-3015.
Griffin, L. W., and McConnaughey, H. V., 1989, “Prediction of the Aerodynamic Environment and Heat Transfer for Rotor-Stator Configurations,” ASME Paper No. 89-GT-89.
Tran,  L. T., and Taulbee,  D. B., 1992, “Prediction of Unsteady Rotor-Surface Pressure and Heat Transfer From Wake Passings,” ASME J. Turbomach., 114, pp. 807–817.
Korakianitis,  T., 1993, “Discussion of ‘Prediction of Unsteady Rotor-Surface and Heat Transfer From Wake Passings,’” ASME J. Turbomach., 115, pp. 362–364.
Abhari,  R. S., Guenette,  G. R., Epstein,  A. H., and Giles,  M. B., 1992, “Comparison of Time-Resolved Turbine Rotor Blade Heat Transfer Measurements and Numerical Calculations,” ASME J. Turbomach., 114, pp. 818–827.
Majjigi, R. K., and Gliebe, P. R., 1984, “Development of a Rotor Wake/Vortex Model. Vol. I—Final Report,” NASA-CR-174849.
Albers, J. A., and Gregg, J. L., 1974, “Computer Program for Calculating Laminar, Transitional, and Turbulent Boundary Layers for a Compressible Axisymmetric Flow,” NASA TN D-7521, Apr.
Liepmann, H. W., and Roshko, A., 1957, Elements of Gasdynamics, Wiley, New York, NY.


Grahic Jump Location
Stator-rotor geometry, and periodic phase angle ϕ
Grahic Jump Location
Unsteady flow vectors superimposed on entropy contours for one full stator pitch from ϕ=0:000 to ϕ=8:780
Grahic Jump Location
Unsteady heat transfer rate (q̇ [btu/ft2 /s]) measurements and calculations as a function of phase ϕ. Top left: point A; top right: point B; bottom left: point C; and bottom right: point D (cf. Figs. 1, 2).
Grahic Jump Location
Periodic local pressures and velocities versus ϕ for six points on the blade surfaces. On the suction surface: (a) at X=0.085; (b) at X=0.50; and (c) at X=0.892. On the pressure surface: (d) at X=0.126; (e) at X=0.50; and (f) at X=0.893.




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In