0
TECHNICAL PAPERS

Numerical Investigation of Heat Transfer in Turbine Cascades With Separated Flows

[+] Author and Article Information
P. de la Calzada, A. Alonso

ITP, Industria de Turbo Propulsores S.A., Madrid, Spain

J. Turbomach 125(2), 260-266 (Apr 23, 2003) (7 pages) doi:10.1115/1.1556014 History: Received September 27, 2001; Online April 23, 2003
Copyright © 2003 by ASME
Your Session has timed out. Please sign back in to continue.

References

Bassi, F., Rebay, S., Savini, M., Colantuoni, S., and Santoriello, G. “A Navier-Stokes Solver With Different Turbulence Models Applied to Film-Cooled Turbine Cascades,” Heat Transfer and Cooling in Gas Turbines, AGARD-CP-527, 1993.
Rivir,  R. B., Johnston,  J. P., and Eaton,  J. K., 1997, “Heat Transfer on a Flat Surface Under a Region of Turbulent Separation,” ASME J. Turbomach., 116(1), pp. 57–62.
Bellows,  R. J., and Mayle,  R. E., 1986, “Heat Transfer Downstream of a Leading Edge Separation Bubble,” ASME J. Turbomach., 108(3), pp. 131–136.
Wolf, S., Homeier, L., and Fottner, L., 2001, “Experimental Investigation of Heat Transfer in Separated Flow on a Highly Loaded LP Turbine Cascade,” Proc. RTO/AVT Symposium and Specialists Meeting Heat Transfer and Cooling in Propulsion and Power Systems, Loen, Norway, May 7–11.
Merzkirch,  W., Page,  R. H., and Fletcher,  L. S., 1988, “A Survey of Heat Transfer in Compressible Separated and Reattached Flows,” AIAA J., 26(2), pp. 144–150.
Hoheisel, H., 1990, “Test Case E/CA-6, Subsonic Turbine Cascade T106,” Test Cases for Computation of Internal Flows in Aero Engine Components, AGARD-AR-275, July.
Arts, T., and Lambert de Rouvroit, M., 1990, “Aero-Thermal Performance of a Two Dimensional Highly Loaded Transonic Turbine Nozzle Guide Vane,” Gas Turbine and Aeroengine Congress and Exposition, Brussels, Belgium, June 11–14.
Corral, R., and Fernandez-Castañeda, J., 1998, “Surface Mesh Generation by Means of Steiner Triangulation,” AIAA-98-3013, presented at 29th AIAA Fluid Dynamics Conference, Albuquerque, NM, June 15–18.
Wilcox,  D. C., 1988, “Reassessment of the Scale Determining Equation for Advanced Turbulence Models,” AIAA J., 26, pp. 1299–1310.
Corral, R., and Contreras, J., 2000, “Quantitative Influence of the Steady Non-Reflecting Boundary Conditions on Blade-to-Blade Computations,” presented at 45th ASME Gas Turbine and Aeroengine Congress, Exposition and Users Symposium, Munich, May 8–11.
Jameson,  A., Schmidt,  W., and Turkel,  E., 1981, “Numerical Solution of the Euler Equations by Finite Volume Method using Runge-Kutta Time Stepping Schemes,” AIAA Pap., 81–1259.
Gehrer,  A., and Jericha,  H., 1999, “External Heat Transfer Predictions in a Highly Loaded Transonic Linear Turbine Guide Vane Cascade Using and Upwind Biased Navier-Stokes Solver,” ASME J. Turbomach., 121 (3).
Boyle,  R. J., and Ameri,  A. A., 1997, “Grid Orthogonality Effects on Predicted Turbine Midspan Heat Transfer and Performance,” ASME J. Turbomach., 119 (1).
Hall,  E. J., and Pletcher,  J. D., 1985, “Application of a Viscous-Inviscid Procedure to Predict Separated Flows with Heat Transfer,” ASME J. Heat Transfer, 107(3), pp. 557–563.

Figures

Grahic Jump Location
T106-300 cascade geometry and aerodynamic design conditions
Grahic Jump Location
2-D hybrid mesh around the T106 blade—left: mesh on linear cascade; right: hybrid mesh around trailing edge
Grahic Jump Location
LS89 blade isentropic Mach number distribution (Re2is=106,M2is=0.875)
Grahic Jump Location
LS89 blade heat transfer distribution (Re2is=5.0×105,M2is=0.92,Tw=450 K)
Grahic Jump Location
LS89 blade heat transfer distribution (Re2is=106,M2is=0.70,Tw=450 K)
Grahic Jump Location
T106 profile pressure coefficient-No separation (Re2is=1.5×105,M2is=0.5,β1=127.7 deg,Tw=325 K)
Grahic Jump Location
T106 profile pressure coefficient (Re2is=1.5×105,M2is=0.5,β1=105 deg,Tw=325 K)
Grahic Jump Location
T106 profile pressure coefficient (Re2is=1.5×105,M2is=0.5,β1=90 deg,Tw=325 K)
Grahic Jump Location
T106 pressure side local Stanton number—leading edge region enlarged (Re2is=1.5×1051=95, 100, 105, 127.7 deg, M2is=0.5,Tw=325 K)
Grahic Jump Location
T106 pressure side local HTC (Re2is=1.5×1051=95, 100, 105, 127.7 deg, M2is=0.5,Tw=325 K)
Grahic Jump Location
T106 pressure side local Cfx—absolute value (Re2is=1.5×1051=95, 100, 105, 127.7 deg, M2is=0.5,Tw=325 K)
Grahic Jump Location
T106 pressure side thermal boundary layer-heated wall and adiabatic wall (Re2is=1.5×1051=105 deg,M2is=0.5,Tw=325 K)
Grahic Jump Location
T106 pressure side local Stanton number (Re2is=1.5, 2, 3 and 4×1051=105 deg,M2is=0.1,Tw=325 K)
Grahic Jump Location
T106 pressure side local HTC (Re2is=1.5, 2, 3, and 4×1051=105 deg,M2is=0.1,Tw=325 K)
Grahic Jump Location
T106 pressure side local Cfx—absolute value (Re2is=1.5, 2, 3, and 4×1051=105 deg,M2is=0.1,Tw=325 K)
Grahic Jump Location
T106 CFD flow pattern-velocity vectors—top: single vortex at M2is=0.1; bottom: two vortices at M2is=0.5(Re2is=1.5×1051=105 deg,Tw=325 K)
Grahic Jump Location
T106 pressure side local Stanton number (Re2is=1.5×1051=105 deg,M2is=0.2, 0.3, 0.5, 0.7, Tw=325 K)
Grahic Jump Location
T106 pressure side local HTC (Re2is=1.5×1051=105 deg,M2is=0.2, 0.3, 0.5, 0.7, Tw=325 K)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In