Aerodynamic Blade Row Interactions in an Axial Compressor—Part I: Unsteady Boundary Layer Development

[+] Author and Article Information
Ronald Mailach, Konrad Vogeler

Dresden University of Technology, Institute for Fluid Mechanics, 01062 Dresden, Germany

J. Turbomach 126(1), 35-44 (Mar 26, 2004) (10 pages) doi:10.1115/1.1649741 History: Received December 01, 2002; Revised March 01, 2003; Online March 26, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Mayle,  R. E., 1991, “The Role of Laminar-Turbulent Transition in Gas Turbine Engines,” ASME J. Turbomach., 113, pp. 509–537.
Schlichting, H., 1979, Boundary-Layer Theory, McGraw-Hill, New York.
Pfeil, H., and Herbst, R., 1979, “Transition Procedure of Instationary Boundary Layers,” ASME Paper No. 79-GT-128.
Pfeil,  H., Herbst,  R., and Schröder,  T., 1983, “Investigation of the Laminar-Turbulent Transition of Boundary Layers Disturbed by Wakes,” ASME J. Eng. Gas Turbines Power, 105, pp. 130–137.
Mayle,  R. E., and Dullenkopf,  K., 1989, “A Theory for Wake-Induced Transition,” ASME J. Turbomach., 111, pp. 188–195.
Liu,  X., and Rodi,  W., 1991, “Experiments on Transitional Boundary Layers With Wake-Induced Unsteadiness,” J. Fluid Mech., 231, pp. 229–256.
Orth,  U., 1993, “Unsteady Boundary-Layer Transition in Flow Periodically Disturbed by Wakes,” ASME J. Turbomach., 115, pp. 707–713.
Teusch, R., Brunner, S., and Fottner, L., 2000, “The Influence of Multimode Transition Initiated by Periodic Wakes on the Profile Loss of a Linear Compressor Cascade,” ASME Paper No. 2000-GT-271.
Halstead,  D. E., Wisler,  D. C., Okiishi,  T. H., Walker,  G. J., Hodson,  H. P., and Shin,  H. W., 1997, “Boundary Layer Development in Axial Compressors and Turbines: Parts I–IV,” ASME J. Turbomach., 119, Part 1, pp. 114–127, Part II, pp. 426–444, Part III, pp. 225–237, Part IV, pp. 128–139.
Walker,  G. J., Hughes,  J. D., and Solomon,  W. J., 1999, “Periodic Transition on an Axial Compressor Stator: Incidence and Clocking Effects: Part I—Experimental Data,” ASME J. Turbomach., 121, pp. 398–407.
Schubauer, G. B., and Klebanoff, P. S., 1956, “Contributions on the Mechanics of Boundary-Layer Transition,” NACA Report No. 1289.
Hodson,  H. P., Huntsman,  I., and Steele,  A. B., 1994, “An Investigation of Boundary Layer Development in a Multistage LP Turbine,” ASME J. Turbomach., 116, pp. 375–383.
Sauer, H., Bernstein, W., Bernhard, H., Biesinger, T., Boos, P., and Möckel, H., 1996, “Konstruktion, Fertigung und Aufbau eines Verdichterprüfstandes und Aufnahme des Versuchsbetriebes an einem Niedergeschwindigkeits-Axialverdichter in Dresden,” Abschlußbericht zum BMBF-Vorhaben 0326758A, Dresden, Germany.
Müller, R., Mailach, R., and Lehmann, I., 1997, “The Design and Construction of a Four-Stage Low-Speed Research Compressor,” Proceedings of the IMP ’97 Conference on Modelling and Design in Fluid-Flow Machinery, J. Badur, Z. Bilicki, J. Mikielewicz, and E. Sliwicki, eds., Nov. 18–21, Gdansk, Poland, pp. 523–530.
Boos, P., Möckel, H., Henne, J. M., and Selmeier, R., 1998, “Flow Measurement in a Multistage Large Scale Low Speed Axial Flow Research Compressor,” ASME 98-GT-432.
Bellhouse,  B. J., and Schultz,  D. L., 1966, “Determination of Mean and Dynamic Skin Friction, Separation and Transition in a Low-Speed Flow With a Thin-Film Heated Element,” J. Fluid Mech., 24, pp. 379–400.
Eulitz, F., 2000, “Numerische Simulation und Modellierung der instationären Strömung in Turbomaschinen,” Ph.D. thesis, Ruhr-Universität Bochum, DLR Forschungsbericht 2000-05, ISSN 1434-8454.
Sanders, A. J., Papalia, J., and Fleeter, S., 2001, “Multi-Blade Row Interactions in a Transonic Axial Compressor, Part I: Stator Particle Image Velocimetry (PIV) Investigations,” ASME 2001-GT-268.
Lehmann, I., 2003, “Strömungsuntersuchungen in stehenden und rotierenden Schaufelkanälen mittels Laser-Doppler-Anemometrie,” Ph.D. thesis, TU Dresden, Fortschritt-Berichte VDI, Reihe 7, Nr. 444, ISBN 3-18-344407-0, VDI-Verlag, Düsseldorf, Germany.
Meyer,  R. X., 1958, “The Effect of Wakes on the Transient Pressure and Velocity Distributions in Turbomachines,” Trans. ASME, 80, pp. 1544–1552.
Mailach, R., and Vogeler, K., 2002, “Experimentelle Untersuchung des instationären Grenzschichtverhaltens auf den Schaufeln eines Niedergeschwindigkeits-Axialverdichters,” DGLR-JT2002-071, Deutscher Luft-und Raumfahrtkongress, Sept. 23–26, Stuttgart, Germany.
Mailach,  R., and Vogeler,  K., 2003, “Wake-Induced Boundary Layer Transition in a Low-Speed Axial Compressor,” Journal of Flow, Turbulence and Combustion, 69(3–4), pp. 271–294.
Mailach, R., and Vogeler, K., 2004, “Aerodynamic Blade Row Interaction in an Axial Compressor, Part II: Unsteady Profile Pressure Distribution and Blade Forces,” 126 , pp. 45–51.
Dong,  Y., and Cumpsty,  N. A., 1990, “Compressor Blade Boundary Layers: Part I—Test Facility and Measurements With No Incident Wakes,” ASME J. Turbomach., 112, pp. 222–230.


Grahic Jump Location
Boundary layer development, stator 1, pressure side, midspan, 23% of chord length, design point (ξ=1.0)
Grahic Jump Location
Sectional drawing of Dresden LSRC
Grahic Jump Location
Surface-mounted hot-film array on a stator blade of first stage, suction side, midspan
Grahic Jump Location
Rotor blade wake structure and effect on boundary layer of a stator blade in a compressor
Grahic Jump Location
Flow field parameters upstream stator 1, middle of axial gap between rotor and stator, midspan, design point
Grahic Jump Location
Parameters of the boundary layer, stator 1, suction side, midspan, 33% of chord length, design point (ξ=1.0)
Grahic Jump Location
(a–c) Parameters of BL, (d) zones of BL (from Figs. 6 (a–c)), stator 1, suction side, midspan, design point (ξ=1.0)
Grahic Jump Location
Skewness along the centerline of wake path (CL) and a path starting between the wakes, stator 1, suction side, midspan, design point (ξ=1.0)
Grahic Jump Location
Comparison of raw data and ensemble-averaged data, stator 1, suction side, midspan, 41% of chord length, design point (ξ=1.0)
Grahic Jump Location
(a) Boundary layer development (skewness), (b) zones of BL (from Fig. 9 (a)), stator 1, suction side, midspan, operating point near the stability limit for design speed (ξ=0.85)
Grahic Jump Location
Parameters of boundary layer, stator 1, pressure side, midspan, design point (ξ=1.0)




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In