0
TECHNICAL PAPERS

Numerical Optimization of Turbomachinery Bladings

[+] Author and Article Information
Stéphane Burguburu

ONERA–Applied Aerodynamics Department, 29, avenue de la division Leclerc, BP 72, 92 322 Cha⁁tillon, Francee-mail: stephane.burguburu@onera.fr

Clement Toussaint

ONERA–Systems and Flight Dynamics Department, 2, avenue E. Belin, 31 055 Toulouse, Francee-mail: clement.toussaint@onera.fr

Christophe Bonhomme

CNES–Propulsion Division, Rond Point de l’Espace, 91003 Evry Cedex, Francee-mail: christophe.bonhomie@cnes.fr

Gilles Leroy

TURBOMECA–Aerothermodynamic Department, 64511 Bordes Cedex, Francee-mail: gilles.Leroy@turbomeca.fr

J. Turbomach 126(1), 91-100 (Mar 26, 2004) (10 pages) doi:10.1115/1.1645869 History: Received December 01, 2002; Revised March 01, 2003; Online March 26, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Joubert, H., and Quiniou, H., 2000, “Turbomachinery Design Used Intensive CFD 22nd ICAS,” Sept., Harrogate, UK.
Vanderplaats, G. N., 1973, “CONMIN—a Fortran Program for Constrained Function Minimisation,” NASA TMX 62282.
Vanderplaats, G. N., 1984, Numerical Optimization Techniques for Engineering Design With Applications, McGraw-Hill, New York.
Samareh, Jamshid A., 2000, “Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD),” 8th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Sept. 6–8, Long Beach, CA.
Bézier, P., 1977, “Essais de définition numérique des courbes et surfaces expérimentales,” thèse de doctorat d’état, Feb.
Quinhuan, W., and Xiaoyan, H., 1988, “The Use of Bézier Polynomial Patches to Define Geometrical Shape of the Flow Channels of Compressors,” ASME Paper 88-GT-60.
Burguburu, S., Toussaint, C., and Leroy, G., 2001, “Numerical Optimization for Turbomachinery Blades Aerodynamic Design Using a Gradient Method Coupled With a Navier-Stokes Solver 15th ISABE,” ISABE2001-1117, Sept. 2–7, Bangalore.
Le Madec, I., 1993, “Modélisation des écoulements transitionnels et turbulents dans les grilles d’aubes de turbomachines suivant l’orientation turbines,” PhD thesis, Rennes University.
Couailler, V., 1999, “Numerical Simulation of Separated Turbulent Flows Based on the Solution of a RANS/Low Reynolds Two-Equations Model,” 37th AIAA/ASME, Reno NV.
Michel, R., Quémard, C., and Durand, R., 1969, “Application d’un schéma de longueur de mélange à l’étude des couches limites turbulentes d’équilibre,” Technical Note 154, Office National d’Etudes et Recherches Aérospatiales.
Chung, J., and Lee, K. D., 2000, “Shape Optimization of Transonic Compressor Blades Using Quasi-3D Flow Physics,” ASME Paper 2000-GT-0489.
Gummer, V., Wenger, U., and Kau, H. P., 2000, “Using Sweep and Dihedral to Control Three-Dimensional Flow in Transonic Stator of Axial Compressor,” ASME Paper 2000-GT-0491.
Shaphar, S., 2001, “Three-Dimensional Design and Optimization of Turbomachinery Blades Using the Navier-Stokes Equations,” 15th ISABE, ISABE2001-1053, Sept. 2–7, Bangalore.
Chung, J., Shim, J., and Lee, K. D., 2001, “3D Design of Transonic Axial Compressor Blades With 3D Navier-Stokes Physics,” AIAA Paper 2001-3305.

Figures

Grahic Jump Location
Optimization flow chart
Grahic Jump Location
Mesh grids and relative Mach number iso-lines
Grahic Jump Location
Objective function history
Grahic Jump Location
Relative Mach number contours before and after optimization
Grahic Jump Location
|∇ρ|/ρ contours before and after optimization
Grahic Jump Location
Off-design performance before and after optimization
Grahic Jump Location
Off-design relative Mach number contours before and after optimization
Grahic Jump Location
Structured grids of the stage
Grahic Jump Location
Relative Mach number contours
Grahic Jump Location
Deformation function and optimized bladings
Grahic Jump Location
Interface boundary condition
Grahic Jump Location
Objective function and isentropic efficiency history
Grahic Jump Location
Relative Mach number contours before and after optimization
Grahic Jump Location
|∇ρ|/ρ contours before and after optimization
Grahic Jump Location
Isentropic Mach number before and after optimization
Grahic Jump Location
Three-dimensional view of the rotor and mesh topology
Grahic Jump Location
Three-dimensional blade deformation function
Grahic Jump Location
Three-dimensional design variables
Grahic Jump Location
Objective function history
Grahic Jump Location
Blade deformation at 80%, 50%, and 20% of the reduced blade span
Grahic Jump Location
Reference and optimized radial profiles
Grahic Jump Location
Downstream entropy iso-lines before and after optimization
Grahic Jump Location
Relative Mach number iso-lines at 90% of the reduced span
Grahic Jump Location
|∇ρ|/ρ contours before and after optimization
Grahic Jump Location
Off-design performance of the compressor

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In