Measurements and Predictions of Heat Transfer on Rotor Blades in a Transonic Turbine Cascade

[+] Author and Article Information
Paul W. Giel

OSS Group, Inc., NASA Glenn Research Center, Cleveland, OH 44135e-mail: Paul.W.Giel@grc.nasa.gov

Robert J. Boyle

NASA Glenn Research Center, Cleveland, OH 44135e-mail: Robert.J.Boyle@grc.nasa.gov

Ronald S. Bunker

General Electric Company, Global Research Center, Schenectady, NY 12301e-mail: bunker@crd.ge.com

J. Turbomach 126(1), 110-121 (Mar 26, 2004) (12 pages) doi:10.1115/1.1643383 History: Received December 01, 2002; Revised March 01, 2003; Online March 26, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.


Arts,  T., Duboue,  J.-M., and Roolin,  G., 1998, “Aerothermal Performance Measurements and Analysis of a Two-Dimensional High Turning Rotor Blade,” ASME J. Turbomach., 120(3), pp. 494–499.
Camci,  C., and Arts,  T., 1991, “Effect of Incidence on Wall Heating Rates and Aerodynamics on a Film Cooled Transonic Turbine Blade,” ASME J. Turbomach., 113(3), pp. 493–513.
Baughn, J. W., Butler, R. J., Byerley, A. R., and Rivir, R. B., 1995, “An Experimental Investigation of Heat Transfer, Transition and Separation on Turbine Blades at Low Reynolds Number and High Turbulence Intensity,” ASME Paper 95-WA/HT-25.
Guenette,  G. R., Epstein,  A. H., Giles,  M. B., Haimes,  R., and Norton,  R. J. G., 1989, “Fully Scaled Transonic Turbine Rotor Heat Transfer Measurements,” ASME J. Turbomach., 111, pp. 1–7.
Graziani,  R. A., Blair,  M. F., Taylor,  R. J., and Mayle,  R. E., 1980, “An Experimental Study of Endwall and Airfoil Surface Heat Transfer in a Large Scale Turbine Blade Cascade,” ASME J. Eng. Power, 102, pp. 1–11.
Blair,  M. F., 1994, “An Experimental Study of Heat Transfer in a Large-Scale Turbine Rotor Passage,” ASME J. Turbomach., 116, pp. 1–13.
Dunn,  M. G., Kim,  J., Civinskas,  K. C., and Boyle,  R. J., 1994, “Time-Averaged Heat Transfer and Pressure Measurements and Comparison With Predictions for a Two-Stage Turbine,” ASME J. Turbomach., 116, pp. 14–23.
Giel, P. W., Van Fossen, G. J., Boyle, R. J., Thurman, D. R., and Civinskas, K. C., 1999, “Blade Heat Transfer Measurements and Predictions in a Transonic Turbine Cascade,” ASME Paper 99-GT-125.
Giel, P. W., Bunker, R. S., Van Fossen, G. J., and Boyle, R. J., 2000, “Heat Transfer Measurements and Predictions on a Power Generation Gas Turbine Blade,” ASME Paper 2000-GT-0209.
Joslyn,  D., and Dring,  R., 1992, “Three-Dimensional Flow in an Axial Turbine: Part 1—Aerodynamic Mechanisms,” ASME J. Turbomach., 114, pp. 61–70.
Thulin, R. D., Howe, D. C., and Singer, I. D., 1982, “Energy Efficient Engine—High-Pressure Turbine Detailed Design Report,” NASA CR-165608.
Boyle, R. J., Lucci, B. L., and Senyitko, R. G., 2002, “Aerodynamic Performance and Turbulence Measurements in a Turbine Vane Cascade,” ASME Paper GT-2002-30434.
Giel, P. W., Thurman, D. R., Lopez, I., Boyle, R. J., Van Fossen, G. J., Jett, T. J., Camperchioli, W. P., and La, H., 1996, “Three-Dimensional Flow Field Measurements in a Transonic Turbine Cascade,” ASME Paper 96-GT-113.
Moffat, R. J., 1990, “Experimental Heat Transfer,” Proc. of the Ninth Int’l Heat Transfer Conf., Hemisphere, Washington, DC, 1 , pp. 187–205.
Kline,  S. J., and McClintock,  F. A., 1953, “Describing Uncertainty in Single-Sample Experiments,” Mech. Eng. (Am. Soc. Mech. Eng.), 75(Jan), pp. 3–8.
Schlichting, H., 1979, Boundary-Layer Theory, Seventh Ed., McGraw-Hill, New York, p. 714.
Chima,  R. V., and Yokota,  J. W., 1990, “Numerical Analysis of Three-Dimensional Viscous Internal Flows,” AIAA J., 28(5), pp. 798–806.
Chima, R. V., 1991, “Viscous Three-Dimensional Calculations of Transonic Fan Performance,” AGARD Propulsion and Energetics Symposium on Computational Fluid Mechanics for Propulsion, San Antonio, Texas, May 27–31.
Arnone,  A., Liou,  M.-S., and Povinelli,  L. A., 1992, “Navier-Stokes Solution of Transonic Cascade Flows Using Non-Periodic C-Type Grids,” J. Propul. Power, 8(2), pp. 410–417.
Boyle,  R. J., and Giel,  P. W., 1995, “Three Dimensional Navier-Stokes Heat Transfer Predictions for Turbine Blade Rows,” J. Propul. Power, 11(6), pp. 1179–1186.
Chima, R. V., Giel, P. W., and Boyle, R. J., 1993, “An Algebraic Turbulence Model for Three-Dimensional Viscous Flows,” AIAA Paper 93-0083 (NASA TM-105931).
Mayle,  R. E., 1991, “The Role of Laminar-Turbulent Transition in Gas Turbine Engines,” ASME J. Turbomach., 113, pp. 509–537.
Steelant, J., and Dick, E., 1999, “Prediction of By-Pass Transition by Means of a Turbulence Weighing Factor—Part I: Theory and Validation,” ASME Paper 99-GT-29.
Boyle,  R. J., and Simon,  F. F., 1999, “Mach Number Effects on Turbine Blade Transition Length Prediction,” ASME J. Turbomach., 121, pp. 694–702.
Solomon, W. J., Walker, G. J., and Gostelow, J. P., 1995, “Transition Length Prediction For Flows With Rapidly Changing Pressure Gradients,” ASME Paper 95-GT-241.
Smith,  M. C., and Kuethe,  A. M., 1966, “Effects of Turbulence on Laminar Skin Friction and Heat Transfer,” Phys. Fluids, 9(12), pp. 2337–2344.
Dullenkopf,  K., and Mayle,  R. E., 1995, “An Account of Free-Stream, Turbulence Length Scale on Laminar Heat Transfer,” ASME J. Turbomach., 117, pp. 401–406.
Ames, F. E., and Moffat, R. J., 1990, “Heat Transfer with High Intensity, Large Scale Turbulence: The Flat Plate Turbulent Boundary Layer and the Cylindrical Stagnation Point,” Department of Mechanical Engineering Report No. HMT-44, Stanford University, Stanford, CA.
Van Fossen,  G. J., Simoneau,  R. J., and Ching,  C. Y., 1995, “Influence of Turbulence Parameters, Reynolds Number, and Body Shape on Stagnation-Region Heat Transfer,” ASME J. Heat Transfer, 117, pp. 597–603.
Langston,  L. S., 1980, “Crossflows in a Turbine Cascade Passage,” ASME J. Eng. Power, 102, pp. 866–874.
Van Fossen, G. J., 2003, personal communication.
Boyle, R. J., and Senyitko, R. G., 2003, “Measurements and Predictions of Surface Roughness Effects on Turbine Vane Aerodynamics,” ASME Paper GT-2003-38580.
Pinson,  M. W., and Wang,  T., 2000, “Effect of Two-Scale Roughness on Boundary Layer Transition Over a Heated Flat Plate: Part 1—Surface Heat Transfer,” ASME J. Turbomach., 122, pp. 301–307.


Grahic Jump Location
Transonic turbine blade cascade facility
Grahic Jump Location
Facility operating parameters
Grahic Jump Location
Measured and calculated blade loadings
Grahic Jump Location
Heat transfer distributions—Case 1
Grahic Jump Location
Heat transfer distributions—Case 2
Grahic Jump Location
Heat transfer distributions—Case 3
Grahic Jump Location
Heat transfer distributions—Case 4
Grahic Jump Location
Effects of Reynolds number on heat transfer
Grahic Jump Location
Stagnation point heat transfer data and correlation
Grahic Jump Location
Heat transfer distributions—Case 6
Grahic Jump Location
Effects of pressure ratio on heat transfer
Grahic Jump Location
Effects of inlet flow angle on heat transfer
Grahic Jump Location
Comparison with fully turbulent calculations—Case 1
Grahic Jump Location
Comparison with fully turbulent calculations—Cases 2, 5, and 8




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In