0
TECHNICAL PAPERS

Advanced High-Turning Compressor Airfoils for Low Reynolds Number Condition—Part II: Experimental and Numerical Analysis

[+] Author and Article Information
Heinz-Adolf Schreiber, Wolfgang Steinert

German Aerospace Center (DLR), Institute of Propulsion Technology, D-51170 Köln, Germany

Toyotaka Sonoda, Toshiyuki Arima

Honda R&D Company, Wako Research Center, Saitama 351-0193, Japan

J. Turbomach 126(4), 482-492 (Dec 29, 2004) (11 pages) doi:10.1115/1.1737781 History: Received December 01, 2002; Revised March 01, 2003; Online December 29, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Rhoden, H. G., 1952, “Effects of Reynolds Number on the Flow of Air Through a Cascade of Compressor Blades,” ARC, R&M No. 2919.
Roberts,  W. B., 1975, “The Effect of Reynolds Number and Laminar Separation on Axial Cascade Performance,” ASME J. Eng. Gas Turbines Power, 97, pp. 261–274.
Roberts,  W. B., 1979, “Axial Compressor Blade Optimization in a Low Reynolds Number Regime,” AIAA J., 17(12), pp. 1361–1367.
Selig,  M. S., Gopalarathan,  A., Giuere,  P., and Lyon,  C. A., 2001, “Systematic Airfoil Design Studies at Low Reynolds Numbers,” in Fixed and Flapping Aerodynamics for Micro Air Vehicle Applications, Prog. Astronaut. Aeronaut., 195, pp. 143–167.
Mueller, T. J., 1985, “Low Reynolds Number Vehicles,” AGARDograph No. 288, AGARD-AG-288.
Sonoda, T., Yamaguchi, Y., Arima, T., Olhofer, M., Sendhoff, B., and Schreiber, H. A., 2003, “Advanced High Turning Compressor Airfoils For Low Reynolds Number Condition, Part 1: Design and Optimization,” ASME Paper GT-2003-38458.
Olhofer, M., Arima, T., Sonoda, T., Fischer, M., and Sendhoff, B., 2001, “Aerodynamic Shape Optimization Using Evolution Strategies,” Optimization in Industry III, Springer-Verlag, New York.
Yamaguchi, Y., and Arima, T., 2000, “Multi-Objective Optimization for the Transonic Compressor Stator Blade,” AIAA Paper 2000-4909.
Arima,  T., Sonoda,  T., Shiratori,  M., Tamura,  A., and Kikuchi,  K., 1999, “A Numerical Investigation of Transonic Axial Compressor Rotor Flow Using a Low Reynolds number k-ε Turbulence Model,” ASME J. Turbomach., 121(1), pp. 44–58.
Wilcox,  D. C., 1988, “Reassessment of the Scale-Determining Equation for Advanced Turbulence Models,” AIAA J., 26(11), pp. 1299–1310.
Drela, M., and Youngren, H., 1991, “Viscous/Inviscid Method for Preliminary Design of Transonic Cascades,” AIAA Paper 91-2364.
Drela, M., 1995, “Implementation of Modified Abu-Ghannam Shaw Transition Criterion,” MISES User’s Guide, M.I.T., Computational Aerospace Science Lab., Cambridge, MA.
Steinert,  W., Eisenberg,  B., and Starken,  B., 1991, “Design and Testing of a Controlled Diffusion Airfoil Cascade for Industrial Axial Flow Compressor Application,” ASME J. Turbomach., 113(4), pp. 583–590.
Sanz, W., and Platzer, M. F., 1997, “On the Calculation of Laminar Separation Bubbles Using Different Transition Models,” ASME Paper 97-GT-453.
Walraevens,  R. E., and Cumpsty,  N. A., 1995, “Leading Edge Separation Bubbles on Turbomachine Blades,” ASME J. Turbomach., 117, pp. 115–125.
Michelassi,  V., Rodi,  W., and Gieß,  P.-A., 1998, “Experimental and Numerical Investigation of Boundary-Layer and Wake Development in a Transonic Turbine Cascade,” Aerosp. Sci. Technol., (3), pp. 191–204.
Eppler, R., 1990, Airfoil Design and Data, Springer-Verlag, Berlin.

Figures

Grahic Jump Location
Comparison of leading edge geometry
Grahic Jump Location
Test section of DLR facility
Grahic Jump Location
Test model of OGV-ES cascade
Grahic Jump Location
Profile Mach number distributions at design incidence and Re≈120,000, experiment (symbol) and MISES simulation
Grahic Jump Location
Effects of Reynolds number on profile Mach number distribution and suction side boundary layer development. Experiment and HSTAR simulation, optimized cascade OGV-ES, M1=0.6,i=0 deg.
Grahic Jump Location
Effect of Reynolds number on profile Mach number distribution and suction side boundary layer development. Experimental and HSTAR simulation, optimized cascade OGV-MOGA, M1=0.6,i=0 deg.
Grahic Jump Location
Experimental loss-incidence characteristics at three different Reynolds numbers, m1=0.6, β1design=133 deg (i=0 deg)
Grahic Jump Location
Profile Mach number distributions at design incidence and Re=860,000, experiment (symbol), and MISES simulation
Grahic Jump Location
Discussion of suction side boundary layer parameters at Re=860,000 (MISES simulation)
Grahic Jump Location
Principle of LE separation (Mueller 5)
Grahic Jump Location
Influence of the Reynolds number on the loss-incidence characteristics, M1=0.6
Grahic Jump Location
Incidence characteristic at the low Reynolds number, HSTAR simulation and experiment, Re≈1.0–1.2×105
Grahic Jump Location
Incidence characteristic at high Reynolds number, HSTAR simulation and experiment, Re≈8.6×105
Grahic Jump Location
Effect of the Reynolds number on experimental losses at three incidence angles, M1=0.6
Grahic Jump Location
MISES suction side boundary layer parameters of OGV-BASE for Tu=0.05 and 0.5% and oil flow picture at i=0 deg and Re≈190,000
Grahic Jump Location
MISES suction-side boundary layer parameters of OGV-ES blade and oil flow picture at i=0 deg and Re≈120,000
Grahic Jump Location
MISES suction side boundary layer parameters of OGV-MOGA blade and oil flow picture at i=0 deg and Re≈120,000

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In