0
TECHNICAL PAPERS

Rotor-Stator Interactions in a Four-Stage Low-Speed Axial Compressor—Part I: Unsteady Profile Pressures and the Effect of Clocking

[+] Author and Article Information
Ronald Mailach, Konrad Vogeler

Dresden University of Technology, Institute for Fluid Mechanics, 01062 Dresden, Germany

J. Turbomach 126(4), 507-518 (Dec 29, 2004) (12 pages) doi:10.1115/1.1791641 History: Received October 01, 2003; Revised March 01, 2004; Online December 29, 2004
Copyright © 2004 by ASME
Your Session has timed out. Please sign back in to continue.

References

Kemp,  N. H., and Sears,  W. R., 1955, “The Unsteady Forces Due to Viscous Wakes in Turbomachines,” J. Aeronaut. Sci., 22(7), pp. 478–483.
Meyer,  R. X., 1958, “The Effect of Wakes on the Transient Pressure and Velocity Distributions in Turbomachines,” Trans. ASME, 80, pp. 1544–1552.
Lefcort,  M. D., 1965, “An Investigation Into Unsteady Blade Forces in Turbomachines,” ASME J. Eng. Power, 87, pp. 345–354.
Grollius, H.-W., 1981, “Experimentelle Untersuchung von Rotor-Nachlaufdellen und deren Auswirkungen auf die dynamische Belastung axialer Verdichter- und Turbinengitter,” PhD thesis, RWTH Aachen, Germany.
Hodson,  H. P., 1985, “Measurements of Wake-Generated Unsteadiness in the Rotor Passages of Axial Flow Turbines,” ASME J. Eng. Gas Turbines Power, 107, pp. 467–476.
Denos,  R., Arts,  T., Paniagua,  G., Michelassi,  V., and Martelli,  F., 2001, “Investigation of the Unsteady Rotor Aerodynamics in a Transonic Turbine Stage,” ASME J. Turbomach., 123, pp. 81–89.
Laumert,  B., Martensson,  H., and Fransson,  T. H., 2002, “Investigation of Unsteady Blade Excitation Mechanisms in a Transonic Turbine Stage, Part I: Phenomenological Identification and Classification, Part II: Analytical Description and Quantification,” ASME J. Turbomach., 124, pp. 410–428.
Valenti, E., Halama, J., Denos, R., and Arts, T., 2002, “Investigation of the 3D Unsteady Rotor Pressure Field in a HP Turbine Stage,” ASME paper no. GT-2002-30365.
Miller,  R. J., Moss,  R. W., Ainsworth,  R. W., and Harvey,  N. W., 2003, “Wake, Shock, and Potential Flow Field Interactions in a 1.5 Stage Turbine, Part I: Vane-Rotor and Rotor Vane Interactions, Part II: Vane-Vane Interaction and Discussion of Results,” ASME J. Turbomach., 125, pp. 33–47.
Pieper, S. J., 1995, “Erfassung instationärer Strömungsvorgänge in einem hochtourigen invers ausgelegten einstufigen Axialverdichter mit Vorleitrad,” PhD thesis, RWTH Aachen, Germany.
Sanders, A. J., and Fleeter, S., 2001, “Multi-Blade Row Interactions in a Transonic Axial Compressor, Part II: Rotor Wake Forcing Function & Stator Unsteady Aerodynamic Response,” ASME paper no. 2001-GT-0269.
Durali,  M., and Kerrebrock,  J. L., 1998, “Stator Performance and Unsteady Loading in Transonic Compressor Stages,” ASME J. Turbomach., 120, pp. 224–232.
Korakianitis,  T., 1993, “On the Propagation of Viscous Wakes and Potential Flow in Axial-Turbine Cascades,” ASME J. Turbomach., 115, pp. 118–127.
Manwaring,  S. R., and Wisler,  D. C., 1993, “Unsteady Aerodynamics and Gust Response in Compressors and Turbines,” ASME J. Turbomach., 115, pp. 724–740.
Valkov,  T., and Tan,  C. S., 1995, “Control of the Unsteady Flow in a Stator Blade Row Interacting With Upstream Moving Wakes,” ASME J. Turbomach., 117, pp. 97–105.
Arnone,  A., and Pacciani,  R., 1996, “Rotor-Stator Interaction Analysis Using the Navier-Stokes Equations and a Multigrid Method,” ASME J. Turbomach., 118, pp. 679–689.
Fan,  S., and Lakshminarayana,  B., 1996, “Time-Accurate Euler Simulation of Interaction of Nozzle Wake and Secondary Flow With Rotor Blade in an Axial Turbine Stage Using Nonreflecting Boundary Conditions,” ASME J. Turbomach., 118, pp. 663–678.
Lee, Y., and Feng, J., 2003, “Potential and Viscous Interactions for a Multi-Blade-Row Compressor,” ASME paper no. GT-2003-38560.
Mailach, R., Müller, L., and Vogeler, K., 2003, “Experimental Investigation of Unsteady Forces on Rotor and Stator Blades of an Axial Compressor,” in Proceedings of the Fifth European Conference on Turbomachinery—Fluid Dynamics and Thermodynamics, Stastny, M., Sieverding, C. H., and Bois, G. Eds., March 18–21, Prague, Czech Republic, pp. 221–223.
Mailach,  R., and Vogeler,  K., 2004, “Aerodynamic Blade Row Interaction in an Axial Compressor, Part I: Unsteady Boundary Layer Development,” ASME J. Turbomach., 126, pp. 35–44.
Mailach,  R., and Vogeler,  K., 2004, “Aerodynamic Blade Row Interaction in an Axial Compressor, Part II: Unsteady Profile Pressure Distribution and Blade Forces,” ASME J. Turbomach., 126, pp. 45–51.
Mailach, R., and Vogeler, K., 2004, “Rotor-Stator Interactions in a Four-Stage Low-Speed Axial Compressor, Part II: Unsteady Aerodynamic Forces of Rotor and Stator Blades,” 126 , pp. 518–525.
Sauer, H., Bernstein, W., Bernhard, H., Biesinger, T., Boos, P., and Möckel, H., 1996, “Konstruktion, Fertigung und Aufbau eines Verdichterprüfstandes und Aufnahme des Versuchsbetriebes an einem Niedergeschwindigkeits-Axialverdichter in Dresden,” Abschlußbericht zum BMBF-Vorhaben 0326758A, Dresden, Germany.
Müller, R., Mailach, R., and Lehmann, I., 1997, “The Design and Construction of a Four-Stage Low-Speed Research Compressor,” in Proceedings of the IMP ’97 Conference on Modelling and Design in Fluid-Flow Machinery, Badur, J., Bilicki, Z., Mikielewicz, J., and Sliwicki E., Eds., Nov. 18–21, Gdansk, Poland, pp. 523–531.
Boos, P., Möckel, H., Henne, J. M., and Selmeier, R., 1998, “Flow Measurement in a Multistage Large Scale Low Speed Axial Flow Research Compressor,” ASME paper no. 98-GT-432.
Stadtmüller, P., and Fottner, L., 2000, “Fast Response Pressure Transducers for the Investigation of Wake-Induced Transition on a Highly Loaded LP Turbine,” Proceedings of the XVth Bi-Annual Symposium on Measuring Techniques in Transonic and Supersonic Flows in Cascades and Turbomachines, 21–22 September, Firenze, Italy.
Reinmöller, U., Stephan, B., Schmidt, S., and Niehuis, R., 2001, “Clocking Effects in a 1.5 Stage Axial Turbine—Steady and Unsteady Experimental Investigations Supported by Numerical Simulations,” ASME paper no. 2001-GT-0304.
Arnone,  A., Marconcini,  M., Pacciani,  R., Schipani,  C., and Spano,  E., 2002, “Numerical Investigation of Airfoil Clocking in a Three-Stage Low-Pressure Turbine,” ASME J. Turbomach., 124, pp. 61–68.
Hsu,  S. T., and Wo,  A. M., 1998, “Reduction of Unsteady Blade Loading by Beneficial Use of Vortical and Potential Disturbances in an Axial Compressor with Rotor Clocking,” ASME J. Turbomach., 120, pp. 705–713.
Cizmas,  P. G. A., and Dorney,  D. J., 2000, “The Influence of Clocking on Unsteady Forces of Compressor and Turbine Blades,” Int. J. Turbo & Jet Engines, 17(2), pp. 133–142.

Figures

Grahic Jump Location
Compressor map of Dresden LSRC, design speed
Grahic Jump Location
Unsteady pressure distribution on PS and SS of rotor 3, MS, design point (ξ=1.00,ζ=1.0)
Grahic Jump Location
Blade section with clocking positions of stator 2; IGV, stator 1, 3 and 4 at fixed positions
Grahic Jump Location
Ensemble-averaged pressure on rotor 3 depending on clocking position of the upstream stator 2 (stator 1, 3 and 4 at fixed positions), SS, MS, 50% chord, design point (ξ=1.00,ζ=1.0)
Grahic Jump Location
Ensemble-averaged pressure on rotor 3 depending on clocking position of the downstream stator 3 (stator 1, 2 and 4 at fixed positions), SS, MS, 50% chord, design point (ξ=1.00,ζ=1.0)
Grahic Jump Location
Sectional drawing of Dresden LSRC, rotor and stator blades with piezoresistive pressure transducers on PS and SS
Grahic Jump Location
Pressure distribution on the rotor and stator blades of the first stage, MS, design speed, design point (ξ=1.00,ζ=1.0)
Grahic Jump Location
Unsteady pressure distribution on PS and SS of stator 1, MS, design point (ξ=1.00,ζ=1.0)
Grahic Jump Location
Unsteady pressure on PS and SS of stator 1, MS, 50% chord, design point (ξ=1.00,ζ=1.0)
Grahic Jump Location
Frequency spectrum of pressure on stator 1, SS, MS, 50% chord, design point (ξ=1.00,ζ=1.0)
Grahic Jump Location
Unsteady pressure distribution on PS and SS of stator 1, MS, operating point near stability limit (ξ=0.85,ζ=1.0)
Grahic Jump Location
Unsteady pressure on PS and SS of stator 1, MS, 50% chord, operating point near stability limit (ξ=0.85,ξ=1.0)
Grahic Jump Location
Unsteady pressure distribution on PS and SS of stator 3, MS, design point (ξ=1.00,ζ=1.0)
Grahic Jump Location
Unsteady pressure distribution on PS and SS of stator 4, MS, design point (ξ=1.00,ζ=1.0)
Grahic Jump Location
Unsteady pressure distribution (rms values) on PS and SS of stator 4, MS, design point (ξ=1.00,ζ=1.0)
Grahic Jump Location
Unsteady pressure distribution on PS and SS of rotor 1, MS, design point (ξ=1.00,ζ=1.0)
Grahic Jump Location
Unsteady pressure on PS and SS of rotor 1, MS, 50% chord, design point (ξ=1.0,ζ=1.0)
Grahic Jump Location
Frequency spectrum of pressure on rotor 1, SS, MS, 50% chord, design point (ξ=1.00,ζ=1.0)
Grahic Jump Location
Classification of the influences of stator 1–4 on unsteady pressure on rotor 3, SS, MS, 50% chord, design point (ξ=1.00,ζ=1.0)
Grahic Jump Location
Variation of first harmonic of pressure on rotor 3, SS, MS, 50% chord, depending on clocking position of individually clocked stator 1–4, design point (ξ=1.00,ζ=1.0)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In