0
TECHNICAL PAPERS

An Implicit Fluctuation Splitting Scheme for Turbomachinery Flows

[+] Author and Article Information
A. Bonfiglioli

DIFA Università della Basilicata, Contrada Macchia Romana, 85100 Potenza, Italyemail: bonfiglioli@unibas.it

P. De Palma, G. Pascazio, M. Napolitano

DIMeG and CEMeC, Politecnico di Bari, via Re David, 200, 70125 Bari, Italy

J. Turbomach 127(2), 395-401 (May 05, 2005) (7 pages) doi:10.1115/1.1777576 History: Received April 15, 2004; Revised April 17, 2004; Online May 05, 2005
Copyright © 2005 by ASME
Your Session has timed out. Please sign back in to continue.

References

Tannehill, J. C., Anderson, D. A., and Pletcher, R. H., 1997, Computational Fluid Mechanics and Heat Transfer, Second Ed., Taylor and Francis, London.
Jameson, A., Schmidt, W., and Turkel, E., 1981, “Numerical Simulation of the Euler Equations by Finite Volume Methods Using Runge-Kutta Time Stepping Schemes,” AIAA Paper 81-1259.
Roe,  P. L., 1981, “Approximate Riemann Solvers, Parameter Vectors and Difference Schemes,” J. Comput. Phys., 43(2), pp. 357–372.
van der Weide, E., and Deconinck, H., 1996, “Positive Matrix Distribution Schemes for Hyperbolic Systems, With Applications to the Euler Equations,” 3rd ECCOMAS CFD Conference, Paris.
Catalano, L. A., De Palma, P., Pascazio, G., and Napolitano, M., 1997, “Matrix Fluctuation Splitting Schemes for Accurate Solutions to Transonic Flows,” Lecture Notes in Physics, 490, Springer-Verlag, Berlin, pp. 328–333.
De Palma, P., Pascazio, G., and Napolitano, M., 1999, “A Hybrid Multidimensional Upwind Scheme for Compressible Steady Flows,” AIAA Paper 99-3513.
De Palma,  P., Pascazio,  G., and Napolitano,  M., 2001, “A Multidimensional Upwind Solver for Steady Compressible Turbulent Flows,” CFD Journal, Special No., pp. 287–295.
Bonfiglioli, A., 1998, “Multidimensional Residual Distribution Schemes for the Pseudo-Compressible Euler and Navier-Stokes Equations on Unstructured Meshes,” Lecture Notes in Physics, 515 , Springer-Verlag, Berlin, pp. 254–259.
Spalart,  P. R., and Allmaras,  S. R., 1994, “A One-Equation Turbulence Model for Aerodynamical Flows,” Rech. Aerosp., 1, pp. 5–21.
Struijs, R., Deconinck, H., and Roe, P. L., 1991, “Fluctuation Splitting Schemes for the 2D Euler Equations,” VKI LS 1991-01, Computational Fluid Dynamics, von Karman Institute, Belgium.
Paillère, H., 1995, “Multidimensional Upwind Residual Distribution Schemes for the Euler and Navier-Stokes Equations on Unstructured Grids,” Ph.D. thesis, Université Libre de Bruxelles, Belgium, June.
Mizukami,  A., and Hughes,  T. J. R., 1985, “A Petrov-Galerkin Finite Element Method for Convection-Dominated Flows: An Accurate Upwinding Technique for Satisfying the Maximum Principle,” Comput. Methods Appl. Mech. Eng., 50, pp. 181–193.
Roe, P. L., 1990, “Optimum Upwind Advection on a Triangular Mesh,” ICASE Report No. 90-75.
van Leer, B., Lee, W. T., and Roe, P. L., 1991, “Characteristic Time-Stepping or Local Preconditioning of the Euler Equations,” AIAA Paper 91-1552.
De Palma, P., Pascazio, G., and Napolitano, M., 1998, “A Hybrid Fluctuation Splitting Scheme for Transonic Inviscid Flows,” 4th ECCOMAS CFD Conference, Athens.
De Palma, P., Pascazio, G., and Napolitano, M., 2002, “A Hybrid Fluctuation Splitting Scheme for Two-Dimensional Compressible Steady Flows,” Innovative Methods for Numerical Solution of Partial Differential Equations, M. M. Hafez and J. J. Chattot, eds., World Scientific Publishing, Singapore, pp. 303–333.
Balay, S., Gropp, W. D., Curfman McInnes, L., and Smith, B. F., 1998, PETSc home page http://www.mcs.anl.gov/petsc.
Sieverding, C. H., 1973, “Experimental Data on Two Transonic Turbine Blade Sections and Comparisons With Various Theoretical Methods,” VKI Report No. LS59, von Karman Institute, Belgium.
Kiock,  R., Lethaus,  F., Baines,  N. C., and Sieverding,  C. H., 1986, “The Transonic Flow Through a Plane Turbine Cascade as Measured in Four European Wind Tunnels,” ASME J. Eng. Gas Turbines Power, 108, pp. 277–285.
Arnone,  A., and Swanson,  R. C., 1993, “Navier-Stokes Solver for Turbomachinery Applications,” ASME J. Turbomach., 115, pp. 305–313.

Figures

Grahic Jump Location
Defninition of inflow and outflow points
Grahic Jump Location
Nonlinear scheme configurations
Grahic Jump Location
Local view of the coarse grid at the leading edge
Grahic Jump Location
Convergence histories for the M2,is=0.81 case
Grahic Jump Location
Coarse grid: Mach number contours for M2,is=0.81(ΔM=0.05)
Grahic Jump Location
Fine grid: Mach number contours for M2,is=0.81(ΔM=0.05)
Grahic Jump Location
Coarse grid: Mach number contours for M2,is=1(ΔM=0.05)
Grahic Jump Location
Fine grid: Mach number contours for M2,is=1(ΔM=0.05)
Grahic Jump Location
Coarse grid: Mach number contours for M2,is=1.11(ΔM=0.05)
Grahic Jump Location
Fine grid: Mach number contours for M2,is=1.11(ΔM=0.05)
Grahic Jump Location
Coarse grid: Mach number contours for M2,is=1.2(ΔM=0.05)
Grahic Jump Location
Fine grid: Mach number contours for M2,is=1.2(ΔM=0.05)
Grahic Jump Location
Isentropic Mach number distributions along the blade for M2,is=0.81
Grahic Jump Location
Isentropic Mach number distributions along the blade for M2,is=1
Grahic Jump Location
Isentropic Mach number distributions along the blade for M2,is=1.11
Grahic Jump Location
Isentropic Mach number distributions along the blade for M2,is=1.2

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In