Klostermeier, C., 2008, “Investigation Into the Capability of Large Eddy Simulation for Turbomachinery Design,” Ph.D. thesis, University of Cambridge, School of Engineering.

Leschziner, M. A., 2000, “Turbulence Modelling for Separated Flows With Anisotropy-Resolving Closures,” Philos. Trans. R. Soc. London, Ser. A, 358 , pp. 3247–3277.

[CrossRef]Long, C. A., Morse, A. P., and Tucker, P. G., 1997, “Measurement and Computation of Heat Transfer in High-Pressure Compressor Drum Geometries With Axial Throughflow,” ASME J. Turbomach., 119 (1), pp. 51–60.

[CrossRef]Georgiadis, N., and DeBonis, J. R., 2006, “Navier Stokes Analysis Methods for Turbulent Jet Flows With Application to Aircraft Exhaust Nozzles,” Prog. Aerosp. Sci., 42 , pp. 377–418.

[CrossRef]Secundov, A. N., Birch, S. F., and Tucker, P. G., 2007, “Propulsive Jets and Their Acoustics,” Philos. Trans. R. Soc. London, Ser. A, 365 , pp. 2443–2467.

[CrossRef]Shur, M., Spalart, P., Strelets, M., and Travin, A., 2003, “Towards the Prediction of Noise From Jet Engines,” Int. J. Heat Fluid Flow, 24 , pp. 551–561.

[CrossRef]DeBonis, J., 2006, “Progress Towards Large Eddy Simulations for Prediction of Realistic Nozzle Systems,” The 44th American Institute of Astronautics and Aeronautics Aerospace Sciences Meeting and Exhibit , Reno, Nevada, Jan. 9–10, Paper No. AIAA 2006-487.

Roe, P., 1997, “Approximate Riemann Solvers, Parameter Vectors, and Difference Solvers,” J. Comput. Phys., 135 , pp. 250–258.

[CrossRef]Cumpsty, N., 2003, "*Jet Propulsion*", Cambridge University Press, Cambridge.

Place, J., 1997, “Three Dimensional Flow in Core Compressors,” Ph.D. thesis, University of Cambridge, School of Engineering.

Tucker, P., Eastwood, S., Klostermeier, C., Xia, H., Ray, P., Tyacke, J., and Dawes, W., 2012, “Hybrid LES Approach for Practical Turbomachinery Flows—Part II: Further Applications,” ASME J. Turbomach., 134 (2), p. 021024.

Eastwood, S., Tucker, P., Klostermeier, C., and XIA, H., 2009, “Developing Large Eddy Simulation for Turbomachinery Applications,” Philos. Trans. R. Soc. London, Ser. A, 367 , pp. 2999–3013.

Lapworth, B., 2004, “HYDRA CFD: A Framework for Collaborative CFD Development,” The International Conference on Scientific and Engineering Computation , Singapore.

Xia, H., 2005, “Dynamic Grid Detached-Eddy Simulation for Synthetic Jet Flows,” Ph.D. thesis, University of Sheffield, School of Engineering.

Hills, N., 2007, “Achieving High Parallel Performance for an Unstructured Unsteady Turbomachinery CFD Code,” Aeronaut. J., 111 (1117), pp. 185–194.

Brandvik, T., and Pullan, G., 2008, “Acceleration of a 3D Euler Solver Using Commodity Graphic Hardware,” The 46th AIAA Aerospace Sciences Meeting and Exhibit , Reno, Nevada, Jan. 7–10, Paper No. AIAA 2008-605.

Piomelli, U., and Balaras, E., 2002, “Wall-Layer Models for Large-Eddy Simulations,” Annu. Rev. Fluid Mech., 34 , pp. 349–374.

[CrossRef]Leschziner, M., Li, N., and Tessicini, F., 2009, “Simulating Flow Separation From Continuous Surfaces: Routes to Overcoming the Reynolds Number Barrier,” Philos. Trans. R. Soc. London, Ser. A, 367 , pp. 2885–2903.

[CrossRef]Chapman, D. R., 1979, “Computational Aerodynamics, Development and Outlook,” AIAA J., 17 , pp. 1293–1313.

[CrossRef]Pao, Y. -H., 1965, “Structure of Turbulent Velocity and Scalar Fields at Large Wave Numbers,” Phys. Fluids, 8 , pp. 1063–1075.

[CrossRef]Koller, U., Monig, R., Kusters, B., and Schreiber, H. -A., 2000, “Development of Advanced Compressor Airfoils for Heavy-Duty Gas Turbines— Part I: Design and Optimization,” ASME J. Turbomach., 122 , pp. 397–405.

[CrossRef]Mayle, R. E., 1991, “The Role of Laminar-Turbulent Transition in Gas Turbine Engines,” ASME J. Turbomach., 113 , pp. 509–536.

[CrossRef]Liu, Y., Tucker, P. G., and Kerr, R. M., 2008, “Linear and Nonlinear Model Large-Eddy Simulations of a Plane Jet,” Comput. Fluids, 37 , pp. 439–449.

[CrossRef]Mary, I., and Sagaut, P., 2002, “Large Eddy Simulation of Flow Around an Airfoil Near Stall,” AIAA J., 40 (6), pp. 1139–1145.

[CrossRef]Ghosal, S., 1996, “An Analysis of Numerical Errors in Large Eddy Simulations of Turbulence,” J. Comput. Phys., 125 , pp. 187–206.

[CrossRef]Chow, F. K., and Moin, P., 2003, “A Further Study of Numerical Errors in Large-Eddy Simulations,” J. Comput. Phys., 184 , pp. 366–380.

[CrossRef]Eastwood, S., 2010, “Hybrid LES-RANS of Complex Geometry Jets,” Ph.D. thesis, Cambridge University, School of Engineering.

Fureby, C., 2004, “Large Eddy Simulation of High Reynolds Number Wall Bounded Flows,” AIAA J., 42 (3), pp. 457–468.

[CrossRef]Wolfshtein, K. M., 1969, “The Velocity and Temperature Distribution in One Dimensional Flow With Turbulence Augmentation and Pressure Gradient,” Int. J. Heat Mass Transfer, 12 , pp. 301–318.

[CrossRef]Dahlstrom, S., and Davidson, L., 2003, “Hybrid RANS-LES With Additional Conditions at the Matching Region,” "*Turbulence Heat and Mass Transfer 4*", K.Hanjalic, Y.Nagano, and M.J.Tummers, eds., Begell House, New York, pp. 689–696.

Davidson, L., and Peng, S. -H., 2003, “Hybrid LES-RANS: A One Equation SGS Model Combined With a k-ω Model for Predicting Recirculating Flows,” Int. J. Numer. Methods Fluids, 43 , pp. 1003–1018.

[CrossRef]Tucker, P. G., and Davidson, L., 2004, “Zonal k-l Based Large Eddy Simulations,” Comput. Fluids, 33 , pp. 267–287.

[CrossRef]Iacovides, H., and Theofanopoulos, I. P., 1991, “Turbulence Modelling of axisymmetric Flow Inside Rotating Cavities,” Int. J. Heat Fluid Flow, 12 (1), pp. 2–11.

[CrossRef]Chung, Y. M., and Tucker, P. G., 2004, “Numerical Studies of Heat Transfer Enhancements in Laminar Separated Flows,” Int. J. Heat Fluid Flow, 25 , pp. 22–31.

[CrossRef]Guillard, H., and Viozat, C., 1997, “On the Behaviour of Upwind Schemes in the Low Mach Number Limit, Theme 4, Simulation and Optimisation of Complex Systems,” Project Sinus, INRIA, Research Report No. 3160, April, 28 pages.

Sandham, N. D., Li, Q., and Yee, H. C., 2002, “Entropy Splitting for High-Order Numerical Simulation of Compressible Turbulence,” J. Comput. Phys., 178 , pp. 307–322.

[CrossRef]Bogey, C., and Bailey, C., 2005, “Decrease of the Effective Reynolds Number With Eddy-Viscosity Subgrid-Scale Modelling,” AIAA J., 43 (2), pp. 437–439.

[CrossRef]Razafindralandy, D., Hamdouni, A., and Béghein, C., 2007, “A Class of Subgrid-Scale Models Preserving the Symmetry Group of Navier–Stokes Equations,” Commun. Nonlinear Sci. Numer. Simul., 12 , pp. 243–253.

[CrossRef]Spalart, P. R., Jou, W., Strelets, M., and Allmaras, S. R., 1997, “Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach,” The First AFOSR International Conference on DNS/LES in Advances in DNS/LES , pp. 137–147.

Tucker, P. G., and Karabasov, S. A., 2009, “Unstructured Grid Solution of the Eikonal Equation for Acoustics,” Int. J. Aeroacoust., 8 (6), pp. 535–553.

[CrossRef]Liu, Y., Tucker, P. G., and Iacono, G. L., 2006, “Comparison of Zonal RANS and LES for a Non-Isothermal Ribbed Channel Flow,” Int. J. Heat Fluid Flow, 27 , pp. 391–401.

[CrossRef]Acharya, S., Dutta, S., Myrum, T. A., and Baker. R. S., 1993, “Periodically Developed Flow and Heat Transfer in a Ribbed Duct,” Int. J. Heat Mass Transfer, 36 (8), pp. 2069–2082.

[CrossRef]Tyacke, J. C., 2009, “Low Reynolds Number Heat Transfer Prediction Employing Large Eddy Simulation for Electronics Geometries,” Ph.D. thesis, Swansea University, Civil and Computational Engineering.

George, W. K., and Tutkun, M., 2009, “Mind the Gap: A Guideline for LES,” Philos. Trans. R. Soc. London, Ser. A, 367 , pp. 2839–2847.

[CrossRef]Mydlarski, L., and Warhaft, Z., 1996, “On the Onset of High-Reynolds-Number Grid Generated Wind Tunnel Turbulence,” J. Fluid Mech., 320 , pp. 331–368.

[CrossRef]Gamard, S., and George, W. K., 1999, “Reynolds Number Dependence of Energy Spectra in the Overlap Region of Isotropic Turbulence,” Flow, Turbul. Combust., 63 , pp. 443–477.

[CrossRef]Lee, D. H., Chung, Y. S., and Won, S. Y., 1999, “The Effect of Concave Surface Curvature on Heat Transfer From a Fully Developed Round Impinging Jet,” Int. J. Heat Mass Transfer, 42 , pp. 2489–2497.

[CrossRef]Tucker, P. G., and Lardeau, S., 2009, “Applied Large Eddy Simulation,” Philos. Trans. R. Soc. London, Ser. A, 367 , pp. 2809–2818.

[CrossRef]