0
Research Papers

Investigation of Trailing Edge Cooling Concepts in a High Pressure Turbine Cascade—Aerodynamic Experiments and Loss Analysis

[+] Author and Article Information
Hans-Jürgen Rehder

Turbine Department, Institute of Propulsion Technology, German Aerospace Center (DLR), 37073 Göttingen, Germany

J. Turbomach 134(5), 051029 (Sep 01, 2012) (11 pages) doi:10.1115/1.4004748 History: Received March 23, 2011; Revised May 09, 2011; Online May 31, 2012

Abstract

As part of a European research project, the aerodynamic and thermodynamic performance of a high pressure turbine cascade with different trailing edge cooling configurations was investigated in the wind tunnel for linear cascades at DLR in Göttingen. A transonic rotor profile with a relative thick trailing edge was chosen for the experiments. Three trailing edge cooling configurations were applied, first central trailing edge ejection, second a trailing edge shape with a pressure side cut-back and slot equipped with a diffuser rib array, and third pressure side film cooling through a row of cylindrical holes. For comparison, aerodynamic investigations on a reference cascade with solid blades (no cooling holes or slots) were performed. The experiments covered the subsonic, transonic and supersonic exit Mach number range of the cascade while varying cooling mass flow ratios up to 2 %. This paper analyzes the effect of coolant ejection on the airfoil losses. Emphasis was given on separating the different loss contributions due to shocks, pressure, and suction side boundary layer, trailing edge, and mixing of the coolant flow. Employed measurement techniques are schlieren visualization, blade surface pressure measurements, and traverses by pneumatic probes in the cascade exit flow field and around the trailing edge. The results show that central trailing edge ejection significantly reduces the mixing losses and therefore decreases the overall loss. Higher loss levels are obtained when applying the configurations with pressure side blowing. In particular, the cut-back geometry reveals strong mixing losses due to the low momentum coolant fluid, which is decelerated by the diffuser rib array inside the slot. The influence of coolant flow rate on the trailing edge loss is tremendous, too. Shock and boundary layer losses are major contributions to the overall loss but are less affected by the coolant. Finally a parameter variation changing the temperature ratio of coolant to main flow was performed, resulting in increasing losses with decreasing coolant temperature.

Copyright © 2012 by American Society of Mechanical Engineers
Your Session has timed out. Please sign back in to continue.

References

Figures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In