Research Papers

A Novel Measuring Technique Utilizing Temperature Sensitive Paint—Measurement Procedure, Validation, Application, and Comparison With Infrared Thermography

[+] Author and Article Information
M. Lorenz

e-mail: marco.lorenz@kit.edu

T. Horbach

e-mail: tim.horbach@kit.edu

A. Schulz

e-mail: achmed.schulz@kit.edu

H.-J. Bauer

e-mail: hans-joerg.bauer@kit.edu
Institut für Thermische Strömungsmaschinen,
Karlsruhe Institute of Technology (KIT),
Kaiserstraße 12, 76131 Karlsruhe, Germany

Contributed by the International Gas Turbine Institute (IGTI) of ASME for publication in the JOURNAL OF TURBOMACHINERY. Manuscript received February 22, 2011; final manuscript received December 5, 2011; published online March 25, 2013. Assoc. Editor: Wing Ng.

J. Turbomach 135(3), 031003 (Mar 25, 2013) (10 pages) Paper No: TURBO-11-1022; doi: 10.1115/1.4006638 History: Received February 22, 2011; Revised December 05, 2011

A novel method for surface temperature measurement using temperature sensitive paint (TSP) is presented. Precalibration of the TSP is shown and a semi in situ calibration technique using thermocouples is provided for high accuracy measurement. The method presented is applied to a film cooling experiment with a maximum surface temperature of 430 K and compared to highly reliable infrared thermography measurements that serve as benchmark results. The in situ calibration technique shows a maximum deviation of 0.5 K from the thermocouple readings. The comparison of laterally averaged temperature distributions of TSP and infrared measurement shows excellent agreement.

Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.


Goldstein, R. J., Eckert, E. R. G., Eriksen, V. L., and Ramsey, J.W., 1970, “Film Cooling Following Injection Through Inclined Circular Tubes,” Israel J. Technol., 8, pp. 145–154.
Martiny, M., Schulz, A., Wittig, S., and Dilzer, M., 1997, “Influence of a Mixing-Jet on Film Cooling,” ASME Paper No. 97-GT-247.
Saumweber, C., and Schulz, A., 2004, “Interaction of Film Cooling Rows: Effect of Hole Geometry and Row Spacing on the Cooling Performance Downstream of the Second Row of Holes,” ASME J. Turbomach, 126, pp. 237–246. [CrossRef]
Saumweber, C., and Schulz, A., 2008, “Effect of Geometry Variations on the Cooling Performance of Fan-Shaped Cooling Holes,” ASME Paper No. GT2008-51038. [CrossRef]
Baldauf, S., Schulz, A., and Wittig, S., 2001, “High Resolution Measurements of Local Heat Transfer Coefficients by Discrete Hole Film Cooling,” ASME J. Turbomach., 123, pp. 749–755. [CrossRef]
Baldauf, S., Schulz, A., and Wittig, S., 2001, “High Resolution Measurements of Local Effectiveness by Discrete Hole Film Cooling,” ASME J. Turbomach., 123, pp. 758–765. [CrossRef]
Gritsch, M., Schulz, A., and Wittig, S., 2000, “Film-Cooling Holes With Expanded Exits: Near-Hole Heat Transfer Coefficients,” Int. J. Heat Fluid Fl., 21, pp. 146–155. [CrossRef]
Gritsch, M., Colban, W., Schär, H., and Döbbeling, K., 2005, “Effect of Hole Geometry on the Thermal Performance of Fan-Shaped Film Cooling Holes,” ASME J. Turbomach.127, 718–725. [CrossRef]
Schiele, R., Kaufmann, F., Schulz, A., and Wittig, S., 1999, “Calculating Turbulent and Transitional Boundary-Layers With Two-Layer Models of Turbulence,” Engineering Turbulence Modelling and Experiments 4, Proceedings of the 4th International Symposium on Engineering Turbulence Modelling and Measurements, Ajaccio, Corsica, France, May 24–26, Elsevier Science Ltd., Oxford, UK, pp. 543–554.
Martiny, M., Schulz, A., and Wittig, S., 1997, “Mathematical Model Describing the Coupled Heat Transfer in Effusion Cooled Combustor Walls,” ASME Paper No. 97-GT-329.
Walters, D. K., and Leylek, J. H., 2000, “A Detailed Analysis of Film-Cooling Physics: Part I—Streamwise Injection With Cylindrical Holes,” ASME J. Turbomach., 122, pp. 102–112. [CrossRef]
Martini, P., Schulz, A., Bauer, H.-J., and Whitney, C. F., 2006, “Detached Eddy Simulation of Film Cooling Performance on the Trailing Edge Cut-Back of Gas Turbine Airfoils,” ASME J. Turbomach., 128, pp. 292–299. [CrossRef]
Martiny, M., Schiele, R., Gritsch, M., SchulzA., and WittigS., 1996, “In Situ Calibration for Quantitative Infrared Thermography,” Quantitative InfraRed Thermography, QIRT 96, Proceedings of Eurotherm Seminar No. 50, Stuttgart, Germany, September 2–5.
Ochs, M., Horbach, T., Schulz, A., Koch, R., and Bauer, H.-J., 2009, “A Novel Calibration Method for an Infrared Thermography System Applied to Heat Transfer Experiments,” Meas. Sci. Technol., 20, p. 075103. [CrossRef]
Ochs, M., Schulz, A., and Bauer, H.-J., 2010, “High Dynamic Range Infrared Thermography by Pixelwise Radiometric Self Calibration,” Infrared Phys. Techn., 53, pp. 112–119. [CrossRef]
Wittig, S., Schulz, A., and Bauer, H.-J., 1985, “Effects of Wakes on the Heat Transfer in Gas Turbine Cascades,” Proceedings of the Propulsion and Energetics Panel 65th Symposium, Bergen, Norway, May 6–10, 1985, Paper No. AGARD-CP-390.
Dullenkopf, K., Schulz, A., and Wittig, S., 1991, “The Effect of Incident Wake Conditions on the Mean Heat Transfer of an Airfoil,” ASME J. Turbomach., 113, pp. 412–418. [CrossRef]
Schiele, R., Sieger, K., Wittig, S., and Schulz, A., 1995, “Heat Transfer Investigations on a High Loaded, Aerothermally Designed Turbine Cascade,” 12th Int. Symposium on Air Breathing Engines, Melbourne, Australia, September 10–15, American Institute of Aeronautics and Astronautics, Reston, VA, pp. 1091–1101.
Lorenz, M., Stripf, M., Schulz, A., and Bauer, H.-J., 2008, “External Heat Transfer Measurements on a Turbine Airfoil in a Linear Cascade,” Proceedings of the 19th International Symposium on Transport Phenomena, Reykjavik, Iceland, August 17–20.
Ireland, P.T., and Jones, T.V., 2000, “Liquid Crystal Measurements of Heat Transfer and Surface Shear Stress,” Meas. Sci. Technol., 11, pp. 969–986. [CrossRef]
Kissel, T., Brübach, J., Baum, E., and Dreizler, A., 2009, “Two-Dimensional Thermographic Phosphor Thermometry Using a CMOS High Speed Camera System,” J. Appl. Phys. B, 96(4), pp. 731–734. [CrossRef]
Heyes, A. L., Seefeldt, S., and Feist, J.P., 2005, “Two-Colour Phosphor Thermometry for Surface Temperature Measurement,” Opt. Laser Technol., 38, pp. 257–265. [CrossRef]
Stripf, M., Schulz, A., and Wittig, S., 2005, “Surface Roughness Effects on External Heat Transfer of a HP Turbine Vane,” ASME J. Turbomach., 127, pp. 200–208. [CrossRef]
Stripf, M., Schulz, A., and Bauer, H.-J., 2007, “Roughness and Secondary Flow Effects on Turbine Vane External Heat Transfer,” J. Propul. Power, 23(2), pp. 283–291. [CrossRef]
Lorenz, M., Schulz, A., and Bauer, H.-J., 2010, “An Experimental Study of Airfoil and Endwall Heat Transfer on a Linear Turbine Blade Cascade—Secondary Flow and Surface Roughness Effects, Heat Transf. Res., 41, pp. 867–887. [CrossRef]
Lorenz, M., Schulz, A., and Bauer, H.-J., 2012, “Experimental Study of Surface Roughness Effects on a Turbine Airfoil in a Linear Cascade—Part I: External Heat Transfer,” ASME J. Turbomach., 134(4), p. 041006. [CrossRef]
Liu, T., and Sullivan, J. P., 2005, Pressure and Temperature Sensitive Paints, Springer, Berlin.
Liu, Q., Kapat, J. S., Douglass, C. J., and Qiu, J., 2003, “Applicability of Temperature Sensitive Paints for Measurement of Surface Temperature Distribution,” ASME Paper No. GT2003-38591. [CrossRef]
Stöcker, H., 2000, Taschenbuch der Physik, Verlag Harri Deutsch, Frankfurt am Main, Germany.
Förster, T., 1951, Fluoreszenz organischer Verbindungen, Vandenhoeck & Ruprecht, Göttingen, Germany.
Becker, R. S., 1969, Theory and Interpretation of Fluorescence and Phosphorescence, John Wiley & Sons Inc., New York.
Drexhage, K.H., 1973, Dye Lasers, F. P. Schäfer, ed., Springer, Berlin, Germany.
Menzel, R., and Thiel, E., 1998, “Intersystem Crossing Rate Constants of Rhodamine Dyes: Influence of the Amino-Group Substitution,” Chem. Phys. Lett., 291, pp. 237–243. [CrossRef]
Du, H., Ru, L., Junzhong, C., Andrew, L., and Lindsey, J.S., 1998, “Photochem-CAD: A Computer-Aided Design and Research Tool in Photochemistry,” Photochem. Photobiol., 68, pp. 141–142. [CrossRef]
Fujii, T., Ishii, A., and Anpo, M., 1990, “Absorption and Fluorescence Spectra of Rhodamine B Molecules Encapsulated in Silica Gel Networks and Their Thermal Stability,” J. Photoch. Photobio. A, 54, pp. 231–237. [CrossRef]
Romano, V., Zweig, A. D., Frenz, M., and Weber, H.P., 1989, “Time-Resolved Thermal Microscopy With Fluorescent Films,” Applied Physics B, 49, pp. 527–533. [CrossRef]
Ehrismann, B., 2009, “Aufbau und Erprobung eines Systems zur Messung von Oberflächentemperaturen mittels thermosensitiver Beschichtungen,” Diplomarbeit, Institut für Thermische Strömungsmaschinen, Universität Karlsruhe (TH).
Horbach, T., Schulz, A., and Bauer, H.-J., 2011, “Trailing Edge Film Cooling of Gas Turbine Airfoils—External Cooling Performance of Various Internal Pin Fin Configurations,” ASME J. Turbomach., 133(4), p. 041006. [CrossRef]
Horbach, T., Schulz, A., and Bauer, H.-J., 2009, “Trailing Edge Film Cooling of Gas Turbine Airfoils—Effects of Ejection Lip Geometry on Film Cooling Effectiveness and Heat Transfer,” J. Heat Transf. Res., 8, pp. 849–865. [CrossRef]
Martini, P., Schulz, A., Bauer, H., Whitney, C. F., and Lutum, E., 2003, “Experimental and Numerical Investigation of Trailing Edge Film Cooling Downstream of a Slot With Internal Rib Arrays,” Proc. Inst. Mech. Eng., Part A: J. Power and Energy, 217, pp. 393–401. [CrossRef]
Martini, P., Schulz, A., and Bauer, H.-J., 2006, “Film Cooling Effectiveness and Heat Transfer on the Trailing Edge Cut-Back of Gas Turbine Airfoils With Various Internal Cooling Designs,” ASME J. Turbomach., 128, pp. 196–205. [CrossRef]


Grahic Jump Location
Fig. 3

Experimental setup for precalibration

Grahic Jump Location
Fig. 2

Absorption and emissions spectra of rhodamine B [34]

Grahic Jump Location
Fig. 1

Jablonsky energy-level diagram [27]

Grahic Jump Location
Fig. 4

Precalibration of the TSP over temperature

Grahic Jump Location
Fig. 8

Experimental setup for the aerothermal investigation of advanced trailing edge cooling designs

Grahic Jump Location
Fig. 5

Pressure dependency

Grahic Jump Location
Fig. 6

Illustration of shift correction

Grahic Jump Location
Fig. 7

Combined cross correlation coefficient (Eq. (19))

Grahic Jump Location
Fig. 9

In situ calibration for the TSP measurement

Grahic Jump Location
Fig. 10

Comparison of temperature distributions for M = 0.5

Grahic Jump Location
Fig. 11

Comparison of laterally averaged temperature distributions




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In