0
Research Papers

Uncertainty Analysis of Heat Transfer Predictions Using Statistically Modeled Data From a Cooled 1-1/2 Stage High-Pressure Transonic Turbine

[+] Author and Article Information
Harika S. Kahveci

GE Power & Water,
Greenville, SC 29615
e-mail: harika.kahveci@ge.com

Kevin R. Kirtley

GE Power & Water,
Greenville, SC 29615
e-mail: kevin.kirtley@ge.com

Contributed by the International Gas Turbine Institute (IGTI) of ASME for publication in the JOURNAL OF TURBOMACHINERY. Manuscript received September 8, 2013; final manuscript received September 18, 2013; published online December 4, 2013. Editor: Ronald Bunker.

J. Turbomach 136(6), 061020 (Dec 04, 2013) (13 pages) Paper No: TURBO-13-1208; doi: 10.1115/1.4025764 History: Received September 08, 2013; Revised September 18, 2013

This paper compares predictions from a 3D Reynolds-averaged Navier–Stokes code and a statistical representation of measurements from a cooled 1-1/2 stage high-pressure transonic turbine to quantify predictive process sensitivity. A multivariable regression technique was applied to both the inlet temperature measurements obtained at the inlet rake, the wall temperature, and heat transfer measurements obtained via heat-flux gauges on the blade airfoil surfaces. By using the statistically modeled temperature profiles to generate the inlet boundary conditions for the computational fluid dynamics analysis, the sensitivity of blade heat transfer predictions due to the variation in the inlet temperature profile and uncertainty in wall temperature measurements and surface roughness is calculated. All predictions are performed with and without cooling. Heat transfer predictions match reasonably well with the statistical representation of the data, both with and without cooling. Predictive precision for this study is driven primarily by inlet profile uncertainty followed by surface roughness and gauge position uncertainty.

Copyright © 2014 by ASME
Your Session has timed out. Please sign back in to continue.

References

Dunn, M. G., 2001, “Convective Heat Transfer and Aerodynamics in Axial Flow Turbines,” ASME J. Turbomach., 123(4), pp. 637–686. [CrossRef]
Dunn, M. G., Martin, H. L., and Stanek, M. J., 1986, “Heat-Flux and Pressure Measurements and Comparison With Prediction for a Low-Aspect-Ratio Turbine Stage,” ASME J. Turbomach., 108(1), pp. 108–115. [CrossRef]
Dunn, M. G., and Chupp, R. E., 1988, “Time-Averaged Heat-Flux Distributions and Comparison With Prediction for the Teledyne 702 HP Turbine Stage,” ASME J. Turbomach., 110(1), pp. 51–56. [CrossRef]
Sharma, O. P., Nguyen, P., Ni, R. H., Rhie, C. M., White, J. A., and Finke, A. K., 1987, “Aerodynamics and Heat Transfer Analysis of a Low Aspect Ratio Turbine,” AIAA Paper No. 87-1916. [CrossRef]
Polanka, M. D., Clark, J. P., White, A. L., Meininger, M., and Praisner, T. J., 2003, “Turbine Tip and Shroud Heat Transfer and Loading Part B: Comparisons Between Prediction and Experiment Including Unsteady Effects,” ASME Paper No. GT2003-38916. [CrossRef]
Abhari, R. S., Guenette, G. R., Epstein, A. H., and Giles, M. B., 1992, “Comparison of Time-Resolved Turbine Rotor Blade Heat Transfer Measurements and Numerical Calculations,” ASME J. Turbomach., 114(4), pp. 818–827. [CrossRef]
Bergholz, R. F., Dunn, M. G., and Steuber, G. D., 2000, “Rotor/Stator Heat Transfer Measurements and CFD Predictions for Short-Duration Turbine Rig Tests,” ASME Paper No. 2000-GT-0208.
Tallman, J. A., 2004, “CFD Heat Transfer Predictions for a High-Pressure Turbine Stage,” ASME Paper No. GT2004-53654. [CrossRef]
Haldeman, C. W., Barter, J. W., Green, B. R., Dunn, M. G., and Bergholz, R. F., 2005, “Aerodynamic and Heat-Flux Measurements With Predictions on a Modern One and One-Half Stage High Pressure Transonic Turbine,” ASME J. Turbomach., 127(3), pp. 522–531. [CrossRef]
Tallman, J. A., Haldeman, C. W., Tolpadi, A. K., Bergholz, R. F., and Dunn, M. G., 2009, “Heat Transfer Measurements and Predictions for a Modern, High-Pressure, Transonic Turbine, Including Endwalls,” ASME J. Turbomach., 131(2), p. 021001. [CrossRef]
Molter, S. M., Dunn, M. G., Haldeman, C. W., Bergholz, R. F., and Vitt, P., 2006, “Heat-Flux Measurements and Predictions for the Blade Tip Region of a High-Pressure Turbine” ASME Paper No. GT2006-90048. [CrossRef]
Povey, T., Chana, K. S., Jones, T. V., and Hurrion, J., 2007, “The Effect of Hot-Streaks on HP Vane Surface and Endwall Heat Transfer: An Experimental and Numerical Study,” ASME J. Turbomach., 129(1), pp. 32–43. [CrossRef]
Salvadori, S., Chana, K. S., Castillon, L., Montomoli, F., Martelli, F., and Adami, P., 2011, “Aerothermal Study of the Unsteady Flow Field in a Transonic Gas Turbine With Inlet Temperature Distortions” ASME J. Turbomach., 133(3), p. 031030. [CrossRef]
Barringer, M., Polanka, M. D., Clark, J. P., Thole, K. A., and Koch, P. J., 2009, “Migration of Combustor Exit Profiles Through High Pressure Turbine Vanes,” ASME J. Turbomach., 131(2), p. 021010. [CrossRef]
Qureshi, I., Beretta, A., Chana, K., and Povey, T., 2012, “Effect of Aggressive Inlet Swirl on Heat Transfer and Aerodynamics in an Unshrouded Transonic HP Turbine,” ASME J. Turbomach., 134(6), p. 061023. [CrossRef]
Basol, A. M., Kalfas, A. I., Abhari, R. S., and Kai, R., 2012, “Integrated Combustor–Turbine Design for Improved Aerothermal Performance: Effect of Dilution Air Control,” ASME J. Eng. Gas Turbines Power, 134(9), p. 091501. [CrossRef]
Schönung, B., and Rodi, W., 1987, “Prediction of Film Cooling by a Row of Holes With a Two-Dimensional Boundary-Layer Procedure,” ASME J. Turbomach., 109(4), pp. 579–587. [CrossRef]
Tafti, D. K., and Yavuzkurt, S., 1990, “Prediction of Heat Transfer Characteristics for Discrete Hole Film Cooling for Turbine Blade Applications,” ASME J. Turbomach., 112(3), pp. 504–511. [CrossRef]
Leylek, J. H., and Zerkle, R. D., 1994, “Discrete-Jet Film Cooling: A Comparison of Computational Results With Experiments,” ASME J. Turbomach., 116(3), pp. 358–368. [CrossRef]
Burdet, A., Abhari, R. S., and Rose, M. G., 2007, “Modeling of Film Cooling—Part II: Model for Use in Three-Dimensional Computational Fluid Dynamics,” ASME J. Turbomach., 129(2), pp. 221–231. [CrossRef]
Camci, C., and Arts, T., 1985, “Short-Duration Measurements and Numerical Simulation of Heat Transfer Along the Suction Side of a Film-Cooled Gas Turbine Blade” ASME J. Eng. Gas Turbines Power, 107(4), pp. 991–997 [CrossRef].
Dring, R. P., Blair, M. F., and Joslyn, H. D., 1980, “An Experimental Investigation of Film Cooling on a Turbine Rotor Blade,” ASME J. Eng. Power, 102(1), pp. 81–87. [CrossRef]
Takeishi, K., Tsukagoshi, K., Aoki, S., and Sato, T., 1992, “Film Cooling on a Gas Turbine Rotor Blade,” ASME J. Turbomach., 114(4), pp. 828–834. [CrossRef]
Dunn, M. G., 1986, “Heat-Flux Measurements for the Rotor of a Full-Stage Turbine: Part I—Time-Averaged Results,” ASME J. Turbomach., 108(1), pp. 90–97. [CrossRef]
Abhari, R. S., and Epstein, A. H., 1994, “An Experimental Study of Film Cooling in a Rotating Transonic Turbine,” ASME J. Turbomach., 116(1), pp. 63–70. [CrossRef]
Abhari, R. S., 1996, “Impact of Rotor-Stator Interaction on Turbine Blade Film Cooling,” ASME J. Turbomach., 118(1), pp. 123–133. [CrossRef]
Garg, V. K., and Abhari, R. S., 1997, “Comparison of Predicted and Experimental Nusselt Number for a Film-Cooled Rotating Blade,” Int. J. Heat Fluid Flow, 18(5), pp. 452–460. [CrossRef]
Roback, R. J., and Dring, R. P., 1993, “Hot Streaks and Phantom Cooling in a Turbine Rotor Passage: Part I—Separate Effects,” ASME J. Turbomach., 115(4), pp. 657–666. [CrossRef]
McLean, C., Glezer, B., and Camci, C., 2001, “Mainstream Aerodynamic Effects Due to Wheelspace Coolant Injection in a High-Pressure Turbine Stage,” ASME J. Turbomach., 123(4), pp. 687–703. [CrossRef]
Ong, J., Miller, R. J., and Uchida, S., 2006, “The Effect of Coolant Injection on the Endwall Flow of a High Pressure Turbine,” ASME Paper No. GT2006-91060. [CrossRef]
Pau, M., Ginibre, P., Paniagua, G., Delhaye, A., and de la Loma, A., 2010, “Aerothermal Impact of Stator-Rim Purge Flow and Rotor-Platform Film Cooling on a Transonic Turbine Stage,” ASME J. Turbomach., 132(2), p. 021006. [CrossRef]
Haldeman, C. W., Heitland, G., Mathison, R. M., Dunn, M. G., Southworth, M. G., and Harral, J. W., 2008, “Aerodynamic and Heat Flux Measurements in a Single-Stage Fully Cooled Turbine—Part 1: Experimental Approach,” ASME J. Turbomach., 130(2), p. 021015. [CrossRef]
Mathison, R. M., Haldeman, C. W., and Dunn, M. G., 2011, “Aerodynamics and Heat Transfer for a Cooled One and One-Half Stage High-Pressure Turbine—Part I: Vane Inlet Temperature Profile Generation and Migration” ASME J. Turbomach., 134(1), p. 011006. [CrossRef]
Mathison, R. M., Haldeman, C. W., and Dunn, M. G., 2012, “Heat Transfer for the Blade of a Cooled Stage and One-Half High-Pressure Turbine, Part I: Influence of Cooling Variation,” ASME J. Turbomach., 134(3), p. 031014. [CrossRef]
Kahveci, H. S., Haldeman, C. W., Mathison, R. M., and Dunn, M. G., 2013, “Heat Transfer for the Film-Cooled Vane of a 1-1/2 Stage High-Pressure Transonic Turbine – Part II: Effect of Cooling Variation on the Vane Airfoil and Inner Endwall,” ASME J. Turbomach., 135(2), p. 021028. [CrossRef]
Kahveci, H. S., Haldeman, C. W., Mathison, R. M., and Dunn, M. G., 2013, “Heat Transfer for the Film-Cooled Vane of a 1-1/2 Stage High-Pressure Transonic Turbine—Part I: Experimental Configuration and Data Review With Inlet Temperature Profile Effects,” ASME J. Turbomach., 135(2), p. 021027. [CrossRef]
Mathison, R. M., Wishart, M. B., Haldeman, C. W., and Dunn, M. G., 2012, “Temperature Predictions and Comparison with Measurements for the Blade Leading Edge and Platform of a 1-1/2 Stage Transonic HP Turbine,” ASME J. Turbomach., 134(1), p. 011016. [CrossRef]
Lehmann, K., Kanjirakkad, V., and Hodson, H., 2011, “Aerodynamic and Aerothermal Investigation of the Flow Around an HPT Rotor Shroud: Heat Transfer and Cooling Effectiveness,” ASME Paper No. GT2011-45979. [CrossRef]
Coren, D. D., Atkins, N. R., Long, C. A., Eastwood, D., Childs, P.R.N., Gujarro-Valencia, A., and Dixon, J. A., 2011, “The Influence of Turbine Stator Well Coolant Flow Rate and Passage Configuration on Cooling Effectiveness,” ASME Paper No. GT2011-46448. [CrossRef]
American Institute of Aeronatics and Astronautics, 1998, “AIAA Guide for the Verification and Validation of Computational Fluid Dynamics Simulations,” AIAA Paper No. G-077-1998e.
Kline, S. J., and McClintock, F. A., 1953, “Describing Uncertainties in Single-Sample Experiments,” Mech. Eng., 75(1), pp. 3–8.
Abernethy, R. B., and ThompsonJ. W., Jr., 1973, “Handbook Uncertainty in Gas Turbine Measurements,” Paper No. AEDC-TR-73-5, available at: http://www.barringer1.com/drbob-bio_files/Nov73.pdf
Moffat, R. J., 1988, “Describing the Uncertainties in Experimental Results,” Exp. Thermal Fluid Sci., 1, pp. 3–17. [CrossRef]
Poti, N. D., and Rabe, D. C., 1998, “Verification of Compressor Data Accuracy by Uncertainty Analysis and Testing Methods,” ASME J. Turbomach., 110(2), pp. 265–269. [CrossRef]
Shelton, M. L., Doughty, R. L., Kiss, T., Gregory, B. A., and Moses, H. L., 1993, “A Statistical Approach to the Experimental Evaluation of Transonic Turbine Airfoils in a Linear Cascade,” ASME J. Turbomach., 115(3), pp. 366–375. [CrossRef]
Hills, R. G., and Trucano, T. G., 1999, “Statistical Validation of Engineering and Scientific Models: Background,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND99-1256.
Oberkampf, W. L., Trucano, T. G., and Hirsch, C., 2004, “Verification, Validation, and Predictive Capability in Computational Engineering and Physics,” Appl. Mech. Rev., 57(5), pp. 345–384. [CrossRef]
Faragher, J., 2006, “The Implementation of Probabilistic Methods for Uncertainty Analysis in Computational Fluid Dynamics Simulations of Fluid Flow and Heat Transfer in a Gas Turbine Engine,” Australian Government, Department of Defence, Defence Science and Technology Organisation, Paper No. DSTO-TR-1830.
Büche, D., Beetz, M., and Ribi, B., 2010, “Uncertainty Analysis for Large-Scale Industrial Radial Compressors,” ASME Paper No. GT2010-22918. [CrossRef]
Bunker, R. S., 2000, “A Review of Turbine Blade Tip Heat Transfer,” Turbine 2000 International Symposium on Heat Transfer in Gas Turbine Systems, Izmir, Turkey, August 13–18.
Bons, J. P., Taylor, R. P., McClain, S. T., and Rivir, R. B., 2001, “The Many Faces of Turbine Surface Roughness”, ASME J. Turbomach., 123(4), pp. 739–748. [CrossRef]
Bogard, D. G., Tabbita, M., and Scmidt, D. L., 1998, “Characterization and Laboratory Simulation of Turbine Airfoil Surface Roughness and Associated Heat Transfer,” ASME J. Turbomach., 120(2), pp. 337–342. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Rake locations across the turbine stage

Grahic Jump Location
Fig. 2

Set of gauges used in comparisons

Grahic Jump Location
Fig. 3

Grid used for the high-pressure turbine blade

Grahic Jump Location
Fig. 4

y+ levels for blade-alone CFD results for cooled case

Grahic Jump Location
Fig. 5

Inlet temperature profiles used for CFD analysis: (a) uncooled case; (b) cooled case

Grahic Jump Location
Fig. 6

Absolute temperature contours at the inlet and exit of the blade: (a) uncooled case; (b) cooled case

Grahic Jump Location
Fig. 7

Profile migration through HP turbine: (a) uncooled case; (b) cooled case

Grahic Jump Location
Fig. 8

Heat flux on the blade surface for uncooled case

Grahic Jump Location
Fig. 10

Heat flux on the blade surface for cooled case

Grahic Jump Location
Fig. 9

Uncertainty in blade heat flux for uncooled case

Grahic Jump Location
Fig. 12

Surface roughness sensitivity for uncooled case

Grahic Jump Location
Fig. 11

Uncertainty in blade heat flux for cooled case

Grahic Jump Location
Fig. 13

Frequency distribution histogram

Grahic Jump Location
Fig. 14

Stanton number distribution for baseline case

Grahic Jump Location
Fig. 15

Total uncertainty in Stanton number

Grahic Jump Location
Fig. 16

Percent variation from the baseline case

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In