Wilcox,
D. C.
, 1998, Turbulence Modeling for CFD, 2nd ed.,
DCW Industries,
La Canada Flintridge, CA.

Boussinesq,
J.
, 1877, “
Théorie de l’écoulement tourbillant,” Mem. Pre. par. div. Sav.,
23, pp. 46–50.

Hinze,
J. O.
, 1976, “
Gedachtniseffekte in der Turbulenz,” Z. Angew. Math. Mech.,
56(1970), pp. T403–T415.

[CrossRef]
Pope,
S. B.
, 2000, Turbulent Flows,
Cambridge University Press,
Cambridge, UK.

Pacciani,
R.
,
Marconcini,
M.
,
Fadai-Ghotbi,
A.
,
Lardeau,
S.
, and
Leschziner,
M. A.
, 2011, “
Calculation of High-Lift Cascades in Low Pressure Turbine Conditions Using a Three-Equation Model,” ASME J. Turbomach.,
133(3), p. 031016.

[CrossRef]
Sanders,
D. D.
,
OBrien,
W. F.
,
Sondergaard,
R.
,
Polanka,
M. D.
, and
Rabe,
D. C.
, 2011, “
Predicting Separation and Transitional Flow in Turbine Blades at Low Reynolds Numbers—Part I: Development of Prediction Methodology,” ASME J. Turbomach.,
133(3), p. 031011.

[CrossRef]
Franke,
M.
,
Wallin,
S.
, and
Thiele,
F.
, 2005, “
Assessment of Explicit Algebraic Reynolds-Stress Turbulence Models in Aerodynamic Computations,” Aerosp. Sci. Technol.,
9(7), pp. 573–581.

[CrossRef]
Michelassi,
V.
,
Wissink,
J.
, and
Rodi,
W.
, 2003, “
Analysis of DNS and LES of Flow in a Low Pressure Turbine Cascade With Incoming Wakes and Comparison With Experiments,” Flow, Turbul. Combust.,
69(3), pp. 295–330.

Denton,
J.
, 2010, “
Some Limitations of Turbomachinery CFD,” ASME Paper No. GT2010-22540.

Medic,
G.
, and
Sharma,
O. P.
, 2012, “
Large-Eddy Simulation of Flow in a Low-Pressure Turbine Cascade,” ASME Paper No. GT2012-68878.

Schobeiri,
M. T.
, and
Abdelfattah,
S.
, 2013, “
On the Reliability of RANS and URANS Numerical Results for High-Pressure Turbine Simulations: A Benchmark Experimental and Numerical Study on Performance and Interstage Flow Behavior of High-Pressure Turbines at Design and Off-Design Conditions Using Two Different Turbine Designs,” ASME J. Turbomach.,
135(6), p. 061012.

[CrossRef]
Lodefier,
K.
, and
Dick,
E.
, 2006, “
Modelling of Unsteady Transition in Low-Pressure Turbine Blade Flows With Two Dynamic Intermittency Equations,” Flow, Turbul. Combust.,
76(2), pp. 103–132.

[CrossRef]
Langtry,
R. B.
, and
Menter,
F. R.
, 2009, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes,” AIAA J.,
47(12), pp. 2894–2906.

[CrossRef]
Coull,
J. D.
, and
Hodson,
H. P.
, 2011, “
Unsteady Boundary-Layer Transition in Low-Pressure Turbines,” J. Fluid Mech.,
681(1), pp. 370–410.

[CrossRef]
Bode,
C.
, and
Friedrichs,
J.
, 2014, “
The Effects of Turbulence Length Scale on Turbulence and Transition Prediction in Turbomachinery Flows,” ASME Paper No. GT2014-27026.

Schmitt,
F. G.
, 2007, “
About Boussinesq's Turbulent Viscosity Hypothesis: Historical Remarks and a Direct Evaluation of Its Validity,” C. R. Méc.,
335(9–10), pp. 617–627.

[CrossRef]
Mansour,
N. N.
,
Kim,
J.
, and
Moin,
P.
, 1988, “
Reynolds-Stress and Dissipation-Rate Budgets in a Turbulent Channel Flow,” J. Fluid Mech.,
194, pp. 15–44.

[CrossRef]
Speziale,
C. G.
,
Abid,
R.
, and
Anderson,
E. C.
, 1992, “
Critical Evaluation of Two-Equation Models for Near-Wall Turbulence,” AIAA J.,
30(2), pp. 324–331.

[CrossRef]
Rodi,
W.
, and
Mansour,
N. N.
, 1993, “
Low Reynolds Number

*k*–

*ε* Modelling With the Aid of Direct Simulation Data,” J. Fluid Mech.,
250, pp. 509–529.

[CrossRef]
Rodi,
W.
,
Mansour,
N. N.
, and
Michelassi,
V.
, 1993, “
One-Equation Near-Wall Turbulence Modeling With the Aid of Direct Simulation Data,” ASME J. Fluids Eng.,
115(2), pp. 196–205.

[CrossRef]
Coleman,
G. N.
,
Kim,
J.
, and
Spalart,
P. R.
, 2003, “
Direct Numerical Simulation of a Decelerated Wall-Bounded Turbulent Shear Flow,” J. Fluid Mech.,
495, pp. 1–18.

[CrossRef]
Hoyas,
S.
, and
Jimenez,
J.
, 2008, “
Reynolds Number Effects on the Reynolds-Stress Budgets in Turbulent Channels,” Phys. Fluids,
20(10), p. 101511.

[CrossRef]
Eitel-Amor,
G.
,
Örlü,
R.
, and
Schlatter,
P.
, 2014, “
Simulation and Validation of a Spatially Evolving Turbulent Boundary Layer up to

*Re*_{θ}=8300,” Int. J. Heat Fluid Flow,
47, pp. 57–69.

[CrossRef]
Stieger,
R. D.
, and
Hodson,
H. P.
, 2005, “
The Unsteady Development of a Turbulent Wake Through a Downstream Low-Pressure Turbine Blade Passage,” ASME J. Turbomach.,
127(2), pp. 388–394.

[CrossRef]
Bijak-Bartosik,
E.
,
Elsner,
W.
, and
Wysocki,
M.
, 2009, “
Evolution of the Wake in a Turbine Blade Passage,” J. Theor. Appl. Mech.,
47(1), pp. 41–53.

Sideridis,
A.
,
Yakinthos,
K.
, and
Goulas,
A.
, 2011, “
Turbulent Kinetic Energy Balance Measurements in the Wake of a Low-Pressure Turbine Blade,” Int. J. Heat Fluid Flow,
32(1), pp. 212–225.

[CrossRef]
Muldoon,
F.
, and
Acharya,
S.
, 2006, “
Analysis of

*k*–

*ε* Budgets for Film Cooling Using Direct Numerical Simulation,” AIAA J.,
44(12), pp. 3010–3021.

[CrossRef]
Michelassi,
V.
,
Chen,
L.-W.
,
Pichler,
R.
, and
Sandberg,
R.
, 2015, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part II: Effect of Inflow Disturbances,” ASME J. Turbomach.,
137(7), p. 071005.

[CrossRef]
Schlichting,
H.
, 2000, Boundary Layer Theory, 8th ed.,
Springer-Verlag,
Berlin.

Adumitroaie,
V.
,
Ristorcelli,
J. R.
, and
Taulbee,
D. B.
, 1999, “
Progress in Favré–Reynolds Stress Closures for Compressible Flows,” Phys. Fluids,
11(9), pp. 2696–2719.

[CrossRef]
Sandberg,
R. D.
,
Michelassi,
V.
,
Pichler,
R.
,
Chen,
L.
, and
Johnstone,
R.
, 2015, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part I: Methodology,” ASME J. Turbomach.,
137(5), p. 051011.

[CrossRef]
Stadtmüller,
P.
, and
Fottner,
L.
, 2001, “
A Test Case for the Numerical Investigation of Wake Passing Effects on a Highly Loaded LP Turbine Cascade Blade,” ASME Paper No. 2001-GT-0311.

Hodson,
H. P.
, and
Howell,
R. J.
, 2005, “
Bladerow Interactions, Transition, and High-Lift Aerofoils in Low-Pressure Turbines,” Annu. Rev. Fluid Mech.,
37(1), pp. 71–98.

[CrossRef]
Arndt,
N.
, 1993, “
Blade Row Interaction in a Multistage Low-Pressure Turbine,” ASME J. Turbomach.,
115(1), pp. 137–146.

[CrossRef]
Spalart,
P. R.
,
Shur,
M. L.
,
Strelets,
M. K.
, and
Travin,
A. K.
, 2014, “
Direct Simulation and RANS Modelling of a Vortex Generator Flow,” 10th International ERCOFTAC Symposium on Engineering Turbulence Modelling and Measurements (ETMM10), Marbella, Spain, Sept. 17–19.