Hoda,
A.
, and
Acharya,
S.
, 1999, “
Predictions of a Film Coolant Jet in Crossflow With Different Turbulence Models,” ASME J. Turbomach.,
122(3), pp. 558–569.

[CrossRef]
He,
G.
,
Guo,
Y.
, and
Hsu,
A.
, 1999, “
The Effect of Schmidt Number on Turbulent Scalar Mixing in a Jet-in-Crossflow,” Int. J. Heat Mass Transfer,
42(20), pp. 3727–3738.

[CrossRef]
Muppidi,
S.
, and
Mahesh,
K.
, 2007, “
Direct Numerical Simulation of Round Turbulent Jets in Crossflow,” J. Fluid Mech.,
574, pp. 59–84.

[CrossRef]
Coletti,
F.
,
Benson,
M.
,
Ling,
J.
,
Elkins,
C.
, and
Eaton,
J.
, 2013, “
Turbulent Transport in an Inclined Jet in Crossflow,” Int. J. Heat Fluid Flow,
43, pp. 149–160.

[CrossRef]
Harrison,
K.
, and
Bogard,
D.
, 2008, “
Comparison of RANS Turbulence Models for Prediction of Film Cooling Performance,” ASME Paper No. GT2008-51423.

Ling,
J.
,
Yapa,
S.
,
Benson,
M.
,
Elkins,
C.
, and
Eaton,
J.
, 2013, “
3D Velocity and Scalar Field Measurements of an Airfoil Trailing Edge With Slot Film Cooling: The Effect of an Internal Structure in the Slot,” ASME Paper No. GT2012-68364.

Ling,
J.
,
Ryan,
K.
,
Bodart,
J.
, and
Eaton,
J.
, 2015, “
Analysis of Turbulent Scalar Flux Models for a Discrete Hole Film Cooling Flow,” ASME J. Turbomach.,
138(1), p. 011006.

[CrossRef]
Ray,
J.
,
Lefantzi,
S.
,
Arunajatesan,
S.
, and
Dechant,
L.
, 2014, “
Bayesian Calibration of a *k*–*ϵ* Turbulence Model for Predictive Jet-in-Crossflow Simulations,” AIAA Paper No. 2014-2085.

Ray,
J.
,
Lefantzi,
S.
,
Arunajatesan,
S.
, and
Dechant,
L.
, 2015, “
Bayesian Calibration of a RANS Model With a Complex Response Surface—A Case Study With Jet-in-Crossflow Configuration,” AIAA Paper No. 2015-2784.

Ling,
J.
,
Coletti,
F.
,
Yapa,
S.
, and
Eaton,
J.
, 2013, “
Experimentally Informed Optimization of Turbulent Diffusivity for a Discrete Hole Film Cooling Geometry,” Int. J. Heat Fluid Flow,
44, pp. 348–357.

[CrossRef]
Kaszeta,
R.
, and
Simon,
T.
, 2000, “
Measurement of Eddy Diffusivity of Momentum in Film Cooling Flows With Streamwise Injection,” ASME J. Turbomach.,
122(1), pp. 178–183.

[CrossRef]
Rajabi-Zargarabadi,
M.
, and
Bazdidi-Tehrani,
F.
, 2010, “
Implicit Algebraic Model for Predicting Turbulent Heat Flux,” Int. J. Numer. Methods Fluids,
64(5), pp. 517–531.

[CrossRef]
Azzi,
A.
, and
Lakehal,
D.
, 2002, “
Perspectives in Modeling Film Cooling of Turbine Blades by Transcending Conventional Two-Equation Turbulence Models,” ASME J. Turbomach.,
124(3), pp. 472–484.

[CrossRef]
Bose,
I.
, and
Mahapatra,
R.
, 2001, “
Business Data Mining: A Machine Learning Perspective,” Inf. Manage.,
39(3), pp. 211–225.

[CrossRef]
Witten,
I.
, and
Frank,
E.
, 2005, Data Mining: Practical Machine Learning Tools and Techniques,
Elsevier,
San Francisco, CA.

Bishop,
C.
, 2006, Pattern Recognition and Machine Learning,
Springer,
New York.

Tracey,
B.
,
Duraisamy,
K.
, and
Alonso,
J.
, 2013, “
Application of Supervised Learning to Quantify Uncertainties in Turbulence and Combustion Modeling,” AIAA Paper No. 2013-0259.

Duraisamy,
K.
,
Shang,
Z.
, and
Singh,
A.
, 2015, “
New Approaches in Turbulence and Transition Modeling Using Data-Driven Techniques,” AIAA Paper No. 2015-1284.

Ling,
J.
, and
Templeton,
J.
, 2015, “
Evaluation of Machine Learning Algorithms for Prediction of Regions of High RANS Uncertainty,” Phys. Fluids,
27(8), p. 085103.

[CrossRef]
Ruiz,
A.
,
Lacaze,
G.
, and
Oefelein,
J.
, 2015, “
Flow Topologies and Turbulence Scales in a Jet-in-Cross-Flow,” Phys. Fluids,
27(4), p. 045101.

[CrossRef]
Su,
L.
, and
Mungal,
M.
, 2004, “
Simultaneous Measurements of Scalar and Velocity Field Evolution in Turbulent Crossflowing Jets,” J. Fluid Mech.,
513, pp. 1–45.

[CrossRef]
Oefelein,
J.
, 2006, “
Large Eddy Simulation of Turbulent Combustion Processes in Propulsion and Power Systems,” Prog. Aerosp. Sci.,
42(1), pp. 2–37.

[CrossRef]
Pichler,
R.
,
Sandberg,
R.
,
Michelassi,
V.
, and
Bhaskaran,
R.
, 2015, “
Investigation of the Accuracy of RANS Models to Predict the Flow Through a Low-Pressure Turbine,” ASME Paper No. GT2015-43446.

Mahesh,
K.
, 2013, “
The Interaction of Jets With Crossflow,” Annu. Rev. Fluid Mech.,
45(1), pp. 379–407.

[CrossRef]
Banerjee,
S.
,
Ertunc,
O.
, and
Durst,
F.
, 2008, “
Anisotropy Properties of Turbulence,” 13th WSEAS International Conference on Applied Mathematics, pp. 26–57.

Pope,
S.
, 2000, Turbulent Flows,
Cambridge University Press,
Cambridge, UK.

Radenkovic,
D.
,
Burazer,
J.
, and
Novkovic,
D.
, 2014, “
Anisotropy Analysis of Turbulent Swirl Flow,” FME Trans.,
42(1), pp. 19–25.

[CrossRef]
Banfield,
R.
,
Hall,
L.
,
Bowyer,
K.
,
Bhadoria,
D.
,
Kegelmeyer,
W.
, and
Eschrich,
S.
, 2004, “
A Comparison of Ensemble Creation Techniques,” Multiple Classifier Systems,
Springer, Berlin,
Heidelberg, pp. 223–232.

Breiman,
L.
, 2001, “
Random Forests,” Mach. Learn.,
45(1), pp. 5–32.

[CrossRef]
Rossi,
R.
,
Philips,
D.
, and
Iaccarino,
G.
, 2010, “
A Numerical Study of Scalar Dispersion Downstream of a Wall-Mounted Cube Using Direct Simulations and Algebraic Flux Models,” Int. J. Heat Fluid Flow,
31(5), pp. 805–819.

[CrossRef]
Rossi,
R.
, and
Iaccarino,
G.
, 2013, “
Numerical Analysis and Modeling of a Plume Meandering in Passive Scalar Dispersion Downstream of a Wall-Mounted Cube,” Int. J. Heat Fluid Flow,
43, pp. 137–148.

[CrossRef]
Pinelli,
A.
,
Uhlmann,
M.
,
Sekimoto,
A.
, and
Kawahara,
G.
, 2010, “
Reynolds Number Dependence of Mean Flow Structure in Square Duct Turbulence,” J. Fluid Mech.,
644, pp. 107–122.

[CrossRef]
Ling,
J.
,
Jones,
R.
, and
Templeton,
J.
, 2016, “
Machine Learning Strategies for Systems With Invariance Properties,” J. Comput. Phys.,
318, pp. 22–25.

[CrossRef]
Rossi,
R.
, 2010, “
A Numerical Study of Algebraic Flux Models for Heat and Mass Transport Simulation in Complex Flows,” Int. J. Heat Mass Transfer,
53(21–22), pp. 4511–4525.

[CrossRef]
Rossi,
R.
, and
Iaccarino,
G.
, 2009, “
Numerical Simulation of Scalar Mixing From a Point Source Over a Wavy Wall,” Annual Research Briefs, Center for Turbulence Research, Stanford University, Stanford, CA, pp. 453–456.

Lefantzi,
S.
,
Ray,
J.
,
Arunajatesan,
S.
, and
Dechant,
L.
, 2015, “
Estimation of *k*–*ϵ* Parameters Using Surrogate Models and Jet-in-Crossflow Data,” Sandia National Laboratories, Livermore, CA, Sandia Technical Report No. SAND2015-0707.