0
Research Papers

Effect of Reynolds Number, Hole Patterns, and Hole Inclination on Cooling Performance of an Impinging Jet Array—Part I: Convective Heat Transfer Results and Optimization

[+] Author and Article Information
Weihong Li

Gas Turbine Institute,
Department of Thermal Engineering,
Tsinghua University,
Beijing 100084, China
e-mail: Liwh13@mails.tsinghua.edu.cn

Xueying Li

Gas Turbine Institute,
Department of Thermal Engineering,
Tsinghua University,
Beijing 100084, China
e-mail: lixueying@mail.tsinghua.edu.cn

Li Yang

Department of Mechanical Engineering and
Material Science,
University of Pittsburgh,
Pittsburgh, PA 15213

Jing Ren

Gas Turbine Institute,
Department of Thermal Engineering,
Tsinghua University,
Beijing 100084, China
e-mail: renj@tsinghua.edu.cn

Hongde Jiang

Gas Turbine Institute,
Department of Thermal Engineering,
Tsinghua University,
Beijing 100084, China

Phillip Ligrani

Department of Mechanical and
Aerospace Engineering,
University of Alabama in Huntsville,
Huntsville, AL 35899
e-mail: pml0006@uah.edu

1Corresponding author.

Contributed by the International Gas Turbine Institute (IGTI) of ASME for publication in the JOURNAL OF TURBOMACHINERY. Manuscript received June 30, 2016; final manuscript received October 2, 2016; published online January 4, 2017. Editor: Kenneth Hall.

J. Turbomach 139(4), 041002 (Jan 04, 2017) (11 pages) Paper No: TURBO-16-1137; doi: 10.1115/1.4035045 History: Received June 30, 2016; Revised October 02, 2016

This study comprehensively illustrates the effect of Reynolds number, hole spacing, jet-to-target distance, and hole inclination on the convective heat transfer performance of an impinging jet array. Spatially resolved target surface heat transfer coefficient distributions are measured using transient liquid crystal (TLC) measurement techniques, over a range of Reynolds numbers from 5000 to 25,000. Considered are effects of streamwise and spanwise jet-to-jet spacing (X/D, Y/D: 4–8) and jet-to-target plate distance (Z/D: 0.75–3). Overall, a test matrix of 36 different configurations is employed. In addition, the effect of hole inclination (θ: 0–40 deg) on the heat transfer coefficient is investigated. Optimal hole spacing arrangements and impingement distance are pointed out to maximize the area-averaged Nusselt number and minimize the amount of cooling air. Also included is a new correlation, based on that of Florschuetz et al., to predict row-averaged Nusselt number. The new correlation is capable to cover low Z/D ∼ 0.75 and presents better prediction of row-averaged Nusselt number, which proves to be an effective impingement design tool.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Ligrani, P. , 2013, “ Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines,” Int. J. Rotating Mach., 2013(3), p. 275653.
Bunker, R. S. , Bailey, J. C. , Lee, C.-P. , and Stevens, C. W. , 2004, “ In-Wall Network (Mesh) Cooling Augmentation of Gas Turbine Airfoils,” ASME Paper No. GT2004-54260.
Chyu, M. K. , and Alvin, M. A. , 2010, “ Turbine Airfoil Aerothermal Characteristics in Future Coal–Gas-Based Power Generation Systems,” Heat Transfer Res., 41(7), pp. 737–752. [CrossRef]
Chambers, A. C. , Gillespie, D. R. H. , Ireland, P. T. , and Dailey, G. M. , 2005, “ The Effect of Initial Cross Flow on the Cooling Performance of a Narrow Impingement Channel,” ASME J. Heat Transfer, 127(4), pp. 358–365. [CrossRef]
Weigand, B. , and Spring, S. , 2011, “ Multiple Jet Impingement—A Review,” Heat Transfer Res., 42(2), pp. 101–142. [CrossRef]
Xing, Y. , Spring, S. , and Weigand, B. , 2011, “ Experimental and Numerical Investigation of Impingement Heat Transfer on a Flat and Micro-Rib Roughened Plate With Different Crossflow Schemes,” Int. J. Therm. Sci., 50(7), pp. 1293–1307. [CrossRef]
Liang, G. , 2009, “ Turbine Airfoil With Multiple Near Wall Compartment Cooling,” U.S. Patent No. 7,556,476 B1.
Gillespie, D. R. H. , Wang, Z. , Ireland, P. T. , and Kohler, S. T. , 1998, “ Full Surface Local Heat Transfer Coefficient Measurements in a Model of an Integrally Cast Impingement Cooling Geometry,” ASME J. Turbomach., 120(1), pp. 92–99. [CrossRef]
Terzis, A. , Wagner, G. , von Wolfersdorf, J. , Ott, P. , and Weigand, B. , 2014, “ Effect of Hole Staggering on the Cooling Performance of Narrow Impingement Channels Using the Transient Liquid Crystal Technique,” ASME J. Heat Transfer, 136(7), p. 071701. [CrossRef]
Terzis, A. , Ott, P. , von Wolfersdorf, J. , Weigand, B. , and Cochet, M. , 2014, “ Detailed Heat Transfer Distributions of Narrow Impingement Channels for Cast-In Turbine Airfoils,” ASME J. Turbomach., 136(9), p. 091011. [CrossRef]
Terzis, A. , Ott, P. , Cochet, M. , von Wolfersdorf, J. , and Weigand, B. , 2015, “ Effect of Varying Jet Diameter on the Heat Transfer Distributions of Narrow Impingement Channels,” ASME J. Turbomach., 137(2), p. 021004. [CrossRef]
Kercher, D. M. , and Tabakoff, W. , 1970, “ Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air,” ASME J. Eng. Power, 92(1), pp. 73–82. [CrossRef]
Chance, J. L. , 1974, “ Experimental Investigation of Air Impingement Heat Transfer Under an Array of Round Jets,” Tappi J., 57(6), pp. 108–112.
Metzger, D. E. , Florschuetz, L. W. , Takeuchi, D. I. , Behee, R. D. , and Berry, R. A. , 1979, “ Heat Transfer Characteristics for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air,” ASME J. Heat Transfer, 101(3), pp. 526–531. [CrossRef]
Florschuetz, L. W. , Truman, C. R. , and Metzger, D. E. , 1981, “ Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow,” ASME J. Heat Transfer, 103(2), pp. 337–342. [CrossRef]
Bailey, J. C. , and Bunker, R. S. , 2002, “ Local Heat Transfer and Flow Distributions for Impinging Jet Arrays of Dense and Sparse Extent,” ASME Paper No. GT2002-30473.
Goodro, M. , Ligrani, P. M. , Fox, M. , and Moon, H. K. , 2010, “ Mach Number, Reynolds Number, Jet Spacing Variations: Full Array of Impinging Jets,” J. Thermophys. Heat Transfer, 24(1), pp. 133–144. [CrossRef]
Goodro, M. , Park, J. , Ligrani, P. , Fox, M. , and Moon, H. K. , 2008, “ Effects of Hole Spacing on Spatially-Resolved Jet Array Impingement Heat Transfer,” Int. J. Heat Mass Transfer, 51(25–26), pp. 6243–6253. [CrossRef]
Goodro, M. , Park, J. , Ligrani, P. M. , Fox, M. , and Moon, H. K. , 2009, “ Effect of Temperature Ratio on Jet Array Impingement Heat Transfer,” ASME J. Heat Transfer, 131(1), p. 012201. [CrossRef]
Goodro, M. , Park, J. , Ligrani, P. M. , Fox, M. , and Moon, H. K. , 2010, “ Mach Number, Reynolds Number, Jet Spacing Variations: Full Array of Impinging Jets,” AIAA J. Thermophys. Heat Transfer, 24(1), pp. 133–144. [CrossRef]
Lee, J. , Ren, Z. , Ligrani, P. M. , Lee, D. H. , Fox, M. D. , and Moon, H.-K. , 2014, “ Cross-Flow Effects on Impingement Array Heat Transfer With Varying Jet-to-Target Plate Distance and Hole Spacing,” Int. J. Heat Mass Transfer, 75, pp. 534–544. [CrossRef]
Lee, J. , Ren, Z. , Ligrani, P. M. , Fox, M. D. , and Moon, H.-K. , 2015, “ Crossflows From Jet Array Impingement Cooling: Hole Spacing, Target Plate Distance, Reynolds Number Effects,” Int. J. Therm. Sci., 88, pp. 7–18. [CrossRef]
Yan, X. , and Saniei, N. , 1997, “ Heat Transfer From an Obliquely Impinging Circular, Air Jet to a Flat Plate,” Int. J. Heat Fluid Flow, 18(6), pp. 591–599. [CrossRef]
Tong, A. Y. , 2003, “ On the Impingement Heat Transfer of an Oblique Free Surface Plane Jet,” Int. J. Heat Mass Transfer, 46(11), pp. 2077–2085. [CrossRef]
Schulz, S. , Schueren, S. , and Von Wolfersdorf, J. , 2014, “ A Particle Image Velocimetry-Based Investigation of the Flow Field in an Oblique Jet Impingement Configuration,” ASME J. Turbomach., 136(5), p. 051009. [CrossRef]
Schueren, S. , Hoefler, F. , von Wolfersdorf, J. , and Naik, S. , 2013, “ Heat Transfer in an Oblique Jet Impingement Configuration With Varying Jet Geometries,” ASME J. Turbomach., 135(2), p. 021010. [CrossRef]
El-Gabry, L. A. , and Kaminski, D. A. , 2005, “ Experimental Investigation of Local Heat Transfer Distribution on Smooth and Roughened Surfaces Under an Array of Angled Jets,” ASME J. Turbomach., 127(3), pp. 532–544. [CrossRef]
Xing, Y. , Spring, S. , and Weigand, B. , 2010, “ Experimental and Numerical Investigation of Heat Transfer Characteristics of Inline and Staggered Arrays of Impinging Jets,” ASME J. Heat Transfer, 132(9), p. 092201. [CrossRef]
Hay, J. L. , and Hollingsworth, D. K. , 1996, “ A Comparison of Trichromic Systems for Use in the Calibration of Polymer-Dispersed Thermochromic Liquid Crystals,” Exp. Therm. Fluid Sci., 12(1), pp. 1–12. [CrossRef]
Chen, W. , Ren, J. , and Jiang, H. , 2011, “ Effect of Turning Vane Configurations on Heat Transfer and Pressure Drop in a Ribbed Internal Cooling System,” ASME J. Turbomach., 133(4), p. 41012. [CrossRef]
Incropera, F. P. , Dewitt, D. P. , Bergman, T. L. , and Lavine, A. S. , 2006, Fundamentals of Heat and Mass Transfer, Wiley, Hoboken, NJ.
Terzis, A. , von Wolfersdorf, J. , Weigand, B. , and Ott, P. , 2012, “ Thermocouple Thermal Inertia Effects on Impingement Heat Transfer Experiments Using the Transient Liquid Crystal Technique,” Meas. Sci. Technol., 23(11), p. 115303. [CrossRef]
Moffat, R. J. , 1998, “ Describing the Uncertainties in Experimental Results,” Exp. Therm. Fluid Sci., 1(1), pp. 3–17. [CrossRef]
Yan, Y. , and Owen, J. M. , 2002, “ Uncertainties in Transient Heat Transfer Measurements With Liquid Crystal,” Int. J. Heat Fluid Flow, 23(1), pp. 29–35. [CrossRef]
Chi, Z. , Kan, R. , Ren, J. , and Jiang, H. , 2013, “ Experimental and Numerical Study of the Anti-Crossflows Impingement Cooling Structure,” Int. J. Heat Mass Transfer, 64, pp. 567–580. [CrossRef]
Katti, V. , and Prabhu, S. V. , 2009, “ Influence of Streamwise Pitch on the Local Heat Transfer Characteristics for In-Line Arrays of Circular Jets With Crossflow of Spent Air in One Direction,” Heat Mass Transfer, 45(9), pp. 1167–1184. [CrossRef]
Arik, M. , and Bunker, R. S. , 2006, “ Electronics Packaging Cooling: Technologies From Gas Turbine Engine Cooling,” ASME J. Electron. Packag., 128(3), pp. 215–225. [CrossRef]
Son, C. M. , Gillespie, D. R. H. , Ireland, P. T. , and Dailey, G. M. , 2001, “ Heat Transfer and Flow Characteristics of an Engine Representative Impingement Cooling System,” ASME J. Turbomach., 123(1), pp. 154–160. [CrossRef]
Goldstein, R. , and Seol, W. S. , 1991, “ Heat Transfer to a Row of Impinging Circular Air Jets Including the Effect of Entrainment,” Int. J. Heat Mass Transfer, 34(8), pp. 2133–2147. [CrossRef]

Figures

Grahic Jump Location
Fig. 1

Double-wall cooling vane with multiple impinging jets

Grahic Jump Location
Fig. 2

Impingement cooling test facility

Grahic Jump Location
Fig. 3

Schematic representative of test models

Grahic Jump Location
Fig. 4

Correction of plenum temperature, Re = 20,000

Grahic Jump Location
Fig. 5

Comparison of (a) spanwise average and (b) area average Nusselt number with literature data

Grahic Jump Location
Fig. 6

Discharge coefficient (Cd) for various channel areas with impingement Reynolds number px = 4

Grahic Jump Location
Fig. 7

Local Nusselt number distribution for different Re values: px = 4, py = 6 and pz = 2

Grahic Jump Location
Fig. 8

Spanwise-averaged Nusselt number distribution for different Re values: px = 4, py = 6, and pz = 2

Grahic Jump Location
Fig. 9

Local Nusselt number distribution for different px values: py = 6, pz = 3, and Re = 10,000

Grahic Jump Location
Fig. 10

Spanwise-averaged Nusselt number distributions for different px and pz values: py = 6 and Re = 10,000

Grahic Jump Location
Fig. 11

Local Nusselt number distribution for different py values: px = 4, pz = 3, and Re = 10,000

Grahic Jump Location
Fig. 12

Spanwise-averaged Nusselt number distributions for different py and pz values: px = 4 and Re = 10,000

Grahic Jump Location
Fig. 13

Local Nusselt number distribution for different pz values: px = 4, py = 4, and Re = 10,000

Grahic Jump Location
Fig. 14

Spanwise-averaged Nusselt number distribution for different pz values: px = 4, py = 4, and Re = 10,000

Grahic Jump Location
Fig. 15

Local Nusselt number distribution for different θ values: px = 6, py = 6, pz = 2, and Re = 10,000

Grahic Jump Location
Fig. 16

Spanwise-averaged Nusselt number distribution for different θ values: px = 6, py = 6, pz = 2, and Re = 10,000

Grahic Jump Location
Fig. 17

Area-averaged Nusselt number of target plate for θ = 0 deg versus θ = 20 deg and 40 deg

Grahic Jump Location
Fig. 18

Area-averaged Nusselt number as a function of Gs at pz = 2

Grahic Jump Location
Fig. 19

Area-averaged Nusselt number as a function of Gs at various pz values and Re = 20,000

Grahic Jump Location
Fig. 20

The relative Nusselt number difference (RND) of impingement configurations with similar A but different px, py Re = 20,000

Grahic Jump Location
Fig. 21

Comparison of present area-averaged heat transfer results with Florschuetz et al. [15]

Grahic Jump Location
Fig. 22

Comparison of present area-averaged heat transfer results with the predicted results with new correlation

Grahic Jump Location
Fig. 23

Comparison of some present row-averaged heat transfer results with Florschuetz et al. [15] and new correlation

Grahic Jump Location
Fig. 24

Comparison of all present row-averaged heat transfer results with Florschuetz et al. [15] and new correlation

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In