0
Research Papers

Modeling Particle Deposition Effects in Aircraft Engine Compressors

[+] Author and Article Information
Felix Döring

Institute of Aircraft Propulsion Systems,
University of Stuttgart,
Stuttgart 70569, Germany
e-mail: felix.doering@ila.uni-stuttgart.de

Stephan Staudacher

Institute of Aircraft Propulsion Systems,
University of Stuttgart,
Stuttgart 70569, Germany
e-mail: stephan.staudacher@ila.uni-stuttgart.de

Christian Koch

Institute of Aircraft Propulsion Systems,
University of Stuttgart,
Stuttgart 70569, Germany
e-mail: christian.koch@ila.uni-stuttgart.de

Matthias Weißschuh

Rolls-Royce Deutschland Ltd & Co KG,
Blankenfelde-Mahlow 15827, Germany
e-mail: matthias.weissschuh@rolls-royce.com

1Corresponding author.

Contributed by the International Gas Turbine Institute (IGTI) of ASME for publication in the JOURNAL OF TURBOMACHINERY. Manuscript received July 1, 2016; final manuscript received October 24, 2016; published online January 24, 2017. Assoc. Editor: Rakesh Srivastava.

J. Turbomach 139(5), 051003 (Jan 24, 2017) (10 pages) Paper No: TURBO-16-1139; doi: 10.1115/1.4035072 History: Received July 01, 2016; Revised October 24, 2016

Airborne particles ingested in aircraft engines deposit on compressor blading and end walls. Aerodynamic surfaces degrade on a microscopic and macroscopic scale. Blade row, compressor, and engine performance deteriorate. Optimization of maintenance scheduling to mitigate these effects requires modeling of the deterioration process. This work provides a deterioration model on blade row level and the experimental validation of this model in a newly designed deposition test rig. When reviewing previously published work, a clear focus on deposition effects in industrial gas turbines becomes evident. The present work focuses on quantifying magnitudes and timescales of deposition effects in aircraft engines and the adaptation of the generalized Kern and Seaton deposition model for application in axial compressor blade rows. The test rig's cascade was designed to be representative of aircraft engine compressor blading. The cascade was exposed to an accelerated deposition process. Reproducible deposition patterns were identified. Results showed an asymptotic progression of blade row performance deterioration. A significant increase in total pressure loss and decrease in static pressure rise were measured. Application of the validated model using existing particle concentration and flight cycle data showed that more than 95% of the performance deterioration due to deposition occurs within the first 1000 flight cycles.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Upton, A. W. J. , 1974, “ Axial Flow Compressors and Turbine Blade Fouling: Some Causes, Effects, and Cleaning Methods,” NRCC Symposium on Gas Turbine Operations and Maintenance, Edmonton, AB, Canada, Oct. 21–23, pp. 273–278.
Meher-Homji, C. B. , 1992, “ Gas Turbine Axial Compressor Fouling: A United Treatment of Its Effects, Detection, and Control,” Int. J. Turbo Jet Eng., 9(4), pp. 311–334.
Diakunchak, I. S. , 1992, “ Performance Deterioration in Industrial Gas Turbines,” ASME J. Eng. Gas Turbines Power, 114(2), pp. 161–168. [CrossRef]
Sallee, G. P. , 1978, “ Performance Deterioration Based on Existing (Historical) Data: JT9D Diagnostics Program,” National Aeronautics and Space Administration, Washington, DC, Technical Report No. CR-135448. https://ntrs.nasa.gov/search.jsp?R=19800013837
Kramer, W. H. , and Smith, J. J. , 1978, “ Long-Term CF6 Engine Performance Deterioration: Evaluation of Engine S/N 451-380,” National Aeronautics and Space Administration, Washington, DC, Technical Report No. CR-159390. https://ntrs.nasa.gov/search.jsp?R=19780021160
Richardson, J. H. , Sallee, G. P. , and Smakula, F. K. , 1979, “ Causes of High Pressure Compressor Deterioration in Service,” AIAA Paper No. 79-1234.
Ziemianski, J. A. , and Mehalic, C. M. , 1980, “ Investigation of Performance Deterioration of the CF6/JT9D High-Bypass Ratio Turbofan Engines,” National Aeronautics and Space Administration, Washington, DC, Technical Report No. TM-81552. https://ntrs.nasa.gov/search.jsp?R=19800020831
Brittain, D. , 1983, “ Cleaning Gas Turbine Compressors,” Aircraft Eng. Aerospace Technol., 55(1), pp. 15–17. [CrossRef]
Kurz, R. , and Brun, K. , 2012, “ Fouling Mechanisms in Axial Compressors,” ASME J. Eng. Gas Turbines Power, 134(3), p. 032401. [CrossRef]
Tarabrin, A. P. , Schurovsky, V. A. , Bodrov, A. I. , and Stalder, J.-P. , 1998, “ Influence of Axial Compressor Fouling on Gas Turbine Unit Performance Based on Different Schemes and With Different Initial Parameters,” ASME Paper No. 98-GT-416.
Syverud, E. , Brekke, O. , and Bakken, L. E. , 2007, “ Axial Compressor Deterioration Caused by Saltwater Ingestion,” ASME J. Turbomach., 129(1), pp. 119–126. [CrossRef]
Bammert, K. , and Milsch, R. , 1972, “ Das Verhalten der Grenzschichten an rauhen Verdichterschaufeln,” Forsch. Ing.-Wes., 38(4), pp. 101–109. [CrossRef]
Suder, K. L. , Chima, R. V. , Strazisar, A. J. , and Roberts, W. B. , 1995, “ The Effect of Adding Roughness and Thickness to a Transonic Axial Rotor,” National Aeronautics and Space Administration, Washington, DC, Technical Report No. TM-106958.
Bons, J. P. , 2010, “ A Review of Surface Roughness Effects in Gas Turbines,” ASME J. Turbomach., 132(2), p. 021004. [CrossRef]
Schlichting, H. , and Gersten, K. , 2003, Boundary-Layer Theory, 8th ed., Springer, Berlin.
Bons, J. P. , Taylor, R. P. , McClain, S. T. , and Rivir, R. B. , 2001, “ The Many Faces of Turbine Surface Roughness,” ASME J. Turbomach., 123(4), pp. 739–748. [CrossRef]
Back, S. C. , Hobson, G. V. , Song, S. J. , and Millsaps, K. T. , 2012, “ Effects of Reynolds Number and Surface Roughness Magnitude and Location on Compressor Cascade Performance,” ASME J. Turbomach., 134(5), p. 051013. [CrossRef]
Gbadebo, S. A. , Hynes, T. P. , and Cumpsty, N. A. , 2004, “ Influence of Surface Roughness on Three-Dimensional Separation in Axial Compressors,” ASME J. Turbomach., 126(4), pp. 455–463. [CrossRef]
Seddigh, F. , and Saravanamuttoo, H. I. H. , 1991, “ A Proposed Method for Assessing the Susceptibility of Axial Compressors to Fouling,” ASME J. Eng. Gas Turbines Power, 113(4), pp. 595–600. [CrossRef]
Cerri, G. , Salvini, C. , Procacci, R. , and Rispoli, F. , 1993, “ Fouling and Air Bleed Extracted Flow Influence on Compressor Performance,” ASME Paper No. 93-GT-366.
Zaita, A. V. , Buley, G. , and Karlsons, G. , 1998, “ Performance Deterioration Modeling in Aircraft Gas Turbine Engines,” ASME J. Eng. Gas Turbines Power, 120(2), pp. 344–349. [CrossRef]
Song, T. W. , Kim, T. S. , Kim, J. H. , and Ro, S. T. , 2001, “ Performance Prediction of Axial Flow Compressors Using Stage Characteristics and Simultaneous Calculation of Interstage Parameters,” Proc. Inst. Mech. Eng., Part A, 215(1), pp. 89–98. [CrossRef]
Spina, P. R. , 2002, “ Gas Turbine Performance Prediction by Using Generalized Performance Curves of Compressor and Turbine Stages,” ASME Paper No. GT2002-30275.
Melino, F. , Peretto, A. , and Spina, P. R. , 2010, “ Development and Validation of a Model for Axial Compressor Fouling Simulation,” ASME Paper No. GT2010-22947.
Rodríguez, C. , Sánchez, D. , Chacartegui, R. , Munoz, A. , and Martínez, G. S. , 2013, “ Compressor Fouling: A Comparison of Different Fault Distributions Using a ‘Stage-Stacking’ Technique,” ASME Paper No. GT2013-94010.
Tarabrin, A. P. , Schurovsky, V. A. , Bodrov, A. I. , and Stalder, J.-P. , 1998, “ An Analysis of Axial Compressor Fouling and a Blade Cleaning Method,” ASME J. Turbomach., 120(2), pp. 256–261. [CrossRef]
Song, T. W. , Sohn, J. L. , Kim, T. S. , Kim, J. H. , and Ro, S. T. , 2005, “ An Analytical Approach to Predicting Particle Deposit by Fouling in the Axial Compressor of the Industrial Gas Turbine,” Proc. Inst. Mech. Eng., Part A, 219(3), pp. 203–212. [CrossRef]
El-Batsh, H. , and Haselbacher, H. , 2000, “ Effect of Turbulence Modeling on Particle Dispersion and Deposition on Compressor and Turbine Blade Surfaces,” ASME Paper No. 2000-GT-0519.
Borello, D. , Rispoli, F. , and Venturini, P. , 2012, “ An Integrated Particle-Tracking Impact/Adhesion Model for the Prediction of Fouling in a Subsonic Compressor,” ASME J. Eng. Gas Turbines Power, 134(9), p. 092002. [CrossRef]
Suman, A. , Kurz, R. , Aldi, N. , Morini, M. , Brun, K. , Pinelli, M. , and Spina, P. R. , 2015, “ Quantitative Computational Fluid Dynamics Analyses of Particle Deposition on a Transonic Axial Compressor Blade—Part I: Particle Zones Impact,” ASME J. Turbomach., 137(2), p. 021009. [CrossRef]
Suman, A. , Morini, M. , Kurz, R. , Aldi, N. , Brun, K. , Pinelli, M. , and Spina, P. R. , 2015, “ Quantitative Computational Fluid Dynamic Analyses of Particle Deposition on a Transonic Axial Compressor Blade—Part II: Impact Kinematics and Particle Sticking Analysis,” ASME J. Turbomach., 137(2), p. 021010. [CrossRef]
Suman, A. , Morini, M. , Kurz, R. , Aldi, N. , Brun, K. , Pinelli, M. , and Spina, P. R. , 2016, “ Estimation of the Particle Deposition on a Transonic Axial Compressor Blade,” ASME J. Eng. Gas Turbines Power, 138(1), p. 012604. [CrossRef]
Vigueras Zuniga, M. O. , 2007, “ Analysis of Gas Turbine Compressor Fouling and Washing on Line,” Ph.D. thesis, Cranfield University, Cranfield, UK. https://dspace.lib.cranfield.ac.uk/handle/1826/2448
Roupa, A. , Pilidis, P. , Allison, I. , and Lambart, P. , 2013, “ Study of Wash Fluid Cleaning Effectiveness on Industrial Gas Turbine Compressor Foulants,” ASME Paper No. GT2013-94510.
Igie, U. , Pilidis, P. , Fouias, D. , Ramsden, K. , and Laskaridis, P. , 2014, “ Industrial Gas Turbine Performance: Compressor Fouling and On-Line Washing,” ASME J. Turbomach., 136(10), p. 101001. [CrossRef]
Epstein, N. , 1983, “ Thinking About Heat Transfer Fouling: A 5 × 5 Matrix,” Heat Transfer Eng., 4(1), pp. 43–56. [CrossRef]
Epstein, N. , 1997, “ Elements of Particle Deposition Onto Nonporous Solid Surfaces Parallel to Suspension Flows,” Exp. Therm. Fluid Sci., 14(4), pp. 323–334. [CrossRef]
Kern, D. O. , and Seaton, R. E. , 1959, “ A Theoretical Analysis of Thermal Surface Fouling,” Br. Chem. Eng., 4(5), pp. 258–262.
Theerachaisupakij, W. , Matsusaka, S. , Akashi, Y. , and Masuda, H. , 2003, “ Reentrainment of Deposited Particles by Drag and Aerosol Collision,” J. Aerosol Sci., 34(3), pp. 261–274. [CrossRef]
Müller-Steinhagen, H. , 2011, “ Heat Transfer Fouling: 50 Years After the Kern and Seaton Model,” Heat Transfer Eng., 32(1), pp. 1–13. [CrossRef]
Roach, P. E. , 1987, “ The Generation of Nearly Isotropic Turbulence by Means of Grids,” Int. J. Heat Fluid Flow, 8(2), pp. 82–92. [CrossRef]
Verein Deutscher Ingenieure e.V., 1989, “ Generation of Test Aerosols From Powders Using a Belt Feed Unit,” Beuth, Berlin, Germany, Standard No. VDI 3491-8.
Hirsch, C. , 1993, “ Advanced Methods for Cascade Testing,” Advisory Group for Aerospace Research and Development, Neuilly-sur-Seine, France, Technical Report No. AGARD-AG-328. http://adsabs.harvard.edu/abs/1993STIN...9415119H
Abbott, I. H. , von Doenhoff, A. E. , and Stivers, L. S. , 1945, “ Summary of Airfoil Data,” National Advisory Committee for Aeronautics, Washington, DC, Technical Report No. 824. https://ntrs.nasa.gov/search.jsp?R=19930090976
Grieb, H. , 2009, Verdichter für Turbo-Flugtriebwerke, Springer, Berlin.
Cumpsty, N. A. , 2004, Compressor Aerodynamics, Reprint ed., Krieger, Malabar, FL.
Hergt, A. , Meyer, R. , and Engel, K. , 2006, “ Experimental Investigation of Flow Control in Compressor Cascades,” ASME Paper No. GT2006-90415.
Lieblein, S. , 1960, “ Incidence and Deviation-Angle Correlations for Compressor Cascades,” ASME J. Basic Eng., 82(3), pp. 575–584. [CrossRef]
Naeem, M. , Singh, R. , and Probert, D. , 2001, “ Consequences of Aero-Engine Deteriorations for Military Aircraft,” Appl. Energy, 70(2), pp. 103–133. [CrossRef]
Leipold, R. , Boese, M. , and Fottner, L. , 2000, “ The Influence of Technical Surface Roughness Caused by Precision Forging on the Flow Around a Highly Loaded Compressor Cascade,” ASME J. Turbomach., 122(3), pp. 416–424. [CrossRef]
Deutsches Institut für Normung e.V., 1997, “ Normatmosphäre,” Beuth, Berlin, Germany, Standard No. DIN ISO 2533.
International Organization for Standardization, 1997, “ Road Vehicles—Test Dust for Filter Evaluation—Part 1: Arizona Test Dust,” Beuth, Berlin, Germany, Standard No. ISO 12103-1.
El-Batsh, H. , 2001, “ Modeling Particle Deposition on Compressor and Turbine Blade Surfaces,” Ph.D. thesis, Vienna University of Technology, Vienna, Austria. http://s3.amazonaws.com/academia.edu.documents/36791705/3.pdf?AWSAccessKeyId=AKIAJ56TQJRTWSMTNPEA&Expires=1478199825&Signature=vlgSzd8zciNucoE5nWhswOzQz0Q%3D&response-content-disposition=inline%3B%20filename%3D3.pdf
Meher-Homji, C. B. , Chaker, M. , and Bromley, A. F. , 2009, “ The Fouling of Axial Flow Compressors: Causes, Effects, Susceptibility, and Sensitivity,” ASME Paper No. GT2009-59239.
Amato, F. , Moreno, T. , Pandolfi, M. , Querol, X. , Alastuey, A. , Delgado, A. , Pedrero, M. , and Cots, N. , 2010, “ Concentrations, Sources and Geochemistry of Airborne Particulate Matter at a Major European Airport,” J. Environ. Monit., 12(4), pp. 854–862. [CrossRef] [PubMed]
ICAO, 2011, Airport Air Quality Manual, 1st ed., International Civil Aviation Organization, Montréal, QC, Canada.
Eurocontrol, 2015, “ Taxi-In Times: Summer 2015,” Eurocontrol, Brussels, Belgium, accessed May 19, 2016, http://www.eurocontrol.int/sites/default/files/content/documents/official-documents/facts-and-figures/coda-reports/taxi-in-times-s15.xlsx
Eurocontrol, 2015, “ Taxi-Out Times: Summer 2015,” Eurocontrol, Brussels, Belgium, accessed May 19, 2016, http://www.eurocontrol.int/sites/default/files/content/documents/official-documents/facts-and-figures/coda-reports/taxi-out-times-s15.xlsx

Figures

Grahic Jump Location
Fig. 1

Overview of the deposition test rig

Grahic Jump Location
Fig. 2

Inflow Mach number versus relative span, Re1=5×105; measured two chords upstream of the cascade

Grahic Jump Location
Fig. 3

Geometric and aerodynamic design parameters of the compressor cascade

Grahic Jump Location
Fig. 4

Schematic enthalpy–entropy diagram to illustrate change of thermodynamic state in clean and deteriorated (′) compressor stator

Grahic Jump Location
Fig. 5

Wetted blades and end wall surfaces, sectioned at midspan for visibility

Grahic Jump Location
Fig. 6

Sample photograph (index 2-2) of degraded blade surfaces; deposits appear dark; brightness and contrast adjusted, suction side reflection removed for visibility

Grahic Jump Location
Fig. 7

Relative outflow dynamic head versus relative pitch; nominal boundary conditions Re1 = 5 × 105, mA = 40 mg, and mP = 14.6 g (index 2-2); mean

Grahic Jump Location
Fig. 8

Relative change in static pressure rise coefficient versus particle mass; nominal boundary conditions Re1 = 5 × 105, mA = 40 mg, and mP = 14.6 g (index 2-2); single sample; moving average and least-squares fit

Grahic Jump Location
Fig. 9

Relative change in static pressure rise coefficient versus particle mass; nominal boundary conditions Re1 = 5 × 105, mA = 40 mg, and mP = 14.6 g (index 2-2); mean and 95% confidence interval

Grahic Jump Location
Fig. 10

Relative change in total pressure loss coefficient versus particle mass; nominal boundary conditions Re1 = 5 × 105, mA = 40 mg, and mP = 14.6 g (index 2-2); mean and 95% confidence interval

Grahic Jump Location
Fig. 11

Flight cycles versus particle mass and deterioration isolines (index 2-2); particle concentration φP*=4×10−8 [55], and taxi/idle times by ICAO [56] and Eurocontrol [57,58]

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In