0
Research Papers

Correlation-Based Riblet Model for Turbomachinery Applications

[+] Author and Article Information
Viktor Koepplin

Institute of Turbomachinery and Fluid Dynamics,
Leibniz Universität Hannover,
Appelstr. 9, 30167, Hannover, Germany
e-mail: koepplin@tfd.uni-hannover.de

Florian Herbst

Institute of Turbomachinery and Fluid Dynamics,
Leibniz Universität Hannover,
Appelstr. 9, 30167, Hannover, Germany
e-mail: herbst@tfd.uni-hannover.de

Joerg R. Seume

Institute of Turbomachinery and Fluid Dynamics,
Leibniz Universität Hannover,
Appelstr. 9, 30167, Hannover, Germany
e-mail: seume@tfd.uni-hannover.de

1Corresponding author.

Contributed by the International Gas Turbine Institute (IGTI) of ASME for publication in the JOURNAL OF TURBOMACHINERY. Manuscript received August 9, 2016; final manuscript received December 7, 2016; published online February 28, 2017. Assoc. Editor: Dr. Cengiz Camci.

J. Turbomach 139(7), 071006 (Feb 28, 2017) (10 pages) Paper No: TURBO-16-1190; doi: 10.1115/1.4035605 History: Received August 09, 2016; Revised December 07, 2016

An empirical riblet model for manufactured V-shaped and trapezoidal riblets which is suitable for turbomachinery application is presented. The implementation of the riblet effect employs a correlation-based correction for the damping of the specific dissipation rate ω in the vicinity of the wall which has been previously presented by other researchers. In the current paper, the correlations are extended into the drag-increasing regime and are extended to account for the effect of misalignment of the riblets relative to the flow and for the effect of adverse pressure gradients. In order to account for the latter in modern, massive parallel Reynolds-averaged Navier–Stokes (RANS) codes, a local Clauser parameter has been newly derived. The model is implemented in a three-dimensional (3D) turbomachinery design code and validated with flat plate measurement data and a NACA6510 compressor cascade. The predictions of the experimental values are in very good agreement with the experimental data, showing the capability of the model for designing riblet structured turbomachinery blading.

FIGURES IN THIS ARTICLE
<>
Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Gümmer, V. , 2005, “ Pfeilung und V-Stellung zur Beeinflussung der Dreidimensionalen Strömung in Leiträdern Transsonischer Axialverdichter,” Fortschritt-Berichte, Vol. 7, VDI-Verlag, Düsseldorf, Germany, 7(384).
García-Mayoral, R. , and Jiménez, J. , 2011, “ Drag Reduction by Riblets,” Philos. Trans. R. Soc. A, 369(1940), pp. 1412–1427. [CrossRef]
Lee, S.-H. , and Lee, D.-H. , 2001, “ Flow Field Analysis of a Turbulent Boundary Layer Over a Riblet Surface,” Exp. Fluids, 30(2), pp. 153–166. [CrossRef]
Bechert, D. , and Bartenwerfer, M. , 1989, “ The Viscous Flow on Surfaces With Longitudinal Ribs,” J. Fluid Mech., 206, pp. 105–129. [CrossRef]
Bechert, D. , Bruse, M. , van der Hoeven, J. , and Hoppe, G. , 1997, “ Experiments on Drag-Reducing Surfaces and Their Optimization With an Adjustable Geometry,” J. Fluid Mech., 338, pp. 59–87. [CrossRef]
Bruse, M. , Bechert, D. , van der Hoeven, J. , Hage, W. , and Hoppe, G. , 1993, “ Experiments With Conventional and With Novel Adjustable Drag-Reducing Surfaces,” Near-Wall Turbulent Flows, R. M. C. So, C. G. Speziale, and B. E. Launder , eds., Elsevier, Amsterdam, The Netherlands, pp. 719–738.
Sawyer, W. , and Winter, K. , 1987, “ An Investigation of the Effect on Turbulent Skin Friction of Surfaces With Streamwise Grooves,” International Conference on Turbulent Drag Reduction by Passive Means, London, Sept. 15–17, pp. 330A–362.
Hage, W. , 2004, “ Zur Widerstandsverminderung von Dreidimensionalen Riblet-Strukturen und Anderen Oberflächen,” Ph.D. thesis, TU Berlin, Berlin.
Choi, K.-S. , 1990, “ Drag Reduction Test of Riblets Using Are's High Speed Buoyancy Propelled Vehicle—Moby-d,” Aeron. J., 94(933), pp. 79–85.
Squire, L. , and Savill, A. , 1987, “ Some Experiences of Riblets at Transonic Speeds,” RAeS International Conference on Turbulent Drag Reduction by Passive Means, London, Sept. 15–17, pp. 392–407.
McLean, J. , George-Falvy, D. , and Sullivan, P. , 1987, “ Flight Test of Turbulent Skin-Friction Reduction by Riblets,” RAeS International Conference on Turbulent Drag Reduction by Passive Means, London, Sept. 15–17, pp. 408–424.
Gaudet, L. , 1989, “ Properties of Riblets at Supersonic Speed,” Appl. Sci. Res., 46(3), pp. 245–254. [CrossRef]
Zuniga, F. , Anderson, B. , and Bertelrud, A. , 1992, “ Flight Test Results of Riblets at Supersonic Speeds,” NASA Technical Memorandum 4387.
Trueong, T. , and Pulvin, P. , 1989, “ Influence of Wall Riblets on Diffuser Flow,” Appl. Sci. Res., 46(3), pp. 217–227. [CrossRef]
Nieuwstadt, F. , Wolthers, W. , Leijdens, H. , Krishna Prasad, K. , and Schwarz-van Manen, A. , 1993, “ The Reduction of Skin Friction by Riblets Under the Influence of an Adverse Pressure Gradient,” Exp. Fluids, 15(1), pp. 17–26. [CrossRef]
Debisshop, J. , and Nieuwstadt, F. , 1996, “ Turbulent Boundary Layer in an Adverse Pressure Gradient: Effectiveness of Riblets,” AIAA J., 34(5), pp. 932–937. [CrossRef]
Indinger, T. , 2005, “ Einfluss Eines Positiven Druckgradienten auf Turbulente Grenzschichten an Glatten und Gerillten Oberflächen,” Ph.D. thesis, TU München, München, Germany.
Keck, M. , 2008, “ Experimentelle Untersuchungen zur Wirksamkeit von Riblets in Verzögerten Grenzschichten,” Ph.D. thesis, TU Dresden, Dresden, Germany.
Klumpp, S. , Guldner, T. , Meinke, M. , and Schröder, W. , 2010, “ Riblets in a Turbulent Adverse-Pressure Gradient Boundary Layer,” 5th Flow Control Conference, AIAA Paper No. AIAA 2010-4706.
Gatti, D. , and Quadrio, M. , 2016, “ Reynolds-Number Dependence of Turbulent Skin-Friction Reduction Induced by Spanwise Forcing,” J. Fluid Mech., 802, pp. 553–582. [CrossRef]
Choi, K.-S. , 1989, “ Near-Wall Structure of a Turbulent Boundary Layer With Riblets,” J. Fluid Mech., 208, pp. 417–458. [CrossRef]
Benhalilou, M. , and Kasagi, N. , 1995, “ Numerical Prediction of Turbulent Flow Over a Riblet Surface With Nonlinear kϵ Model,” 10th Symposium on Turbulent Shear Flows, University Park, PA, Aug. 14–16, pp. 14–13–14–18.
Baron, A. , Quadrio, M. , and Vigevano, L. , 1993, “ On the Boundary Layer/Riblet Interaction Mechanisms and the Prediction of Turbulent Drag Reduction,” Int. J. Heat Fluid Flow, 14(4), pp. 324–332. [CrossRef]
Walsh, M. , and Lindemann, A. , 1984, “ Optimization and Application of Riblets for Turbulent Drag Reduction,” AIAA J., 84, p. 0347.
Hage, W. , Meyer, R. , and Knobloch, K. , 2008, “ Zur Vorhersage von Widerstandseigenschaften von Riblet-Oberflächen,” DLR-Interner Bericht, Monograph No. DLR-IB-92517-08/B3.
Lietmeyer, C. , Chahine, C. , and Seume, J. , 2011, “ Numerical Calculation of the Riblet-Effect on Compressor Blades and Validation With Experimental Results,” International Gas Turbine Congress, Osaka, Japan, Nov. 13–18, Paper No. IGTC2011-0106.
Lietmeyer, C. , 2013, “ Berechnungsmodell zur Widerstandsbeeinflussung Nicht-Idealer Riblets auf Verdichterschaufeln,” Ph.D. thesis, Berichte aus dem Institut für Turbomaschinen und Fluid-Dynamik, Leibniz Universität Hannover, Hannover, Germany.
Drela, M. , and Giles, M. , 1997, “ Viscous-Inviscid Analysis of Transonic and Low Reynolds Number Airfoils,” AIAA J., 25(7), pp. 1347–1355.
Lietmeyer, C. , Denkena, B. , Krawczuk, T. , Kling, R. , Overmeyer, L. , Wojakowsky, B. , Scheuer, R. , Vynnyk, T. , and Seume, J. , 2013, “ Recent Advances in Manufacturing of Riblets on Compressor Blades and Their Aerodynamic Impact,” ASME J. Turbomach., 135(4), p. 041008. [CrossRef]
Oehlert, K. , and Seume, J. , 2006, “ Exploratory Experiments on Machined Riblets on Compressor Blades,” 2nd Joint U.S. European Fluids Engineering Division Summer Meeting, ASME Paper No. FEDSM2006-98093.
Oehlert, K. , Seume, J. , Siegel, F. , Ostendorf, A. , Wang, B. , Denkena, B. , Vynnyk, T. , Reithmeier, E. , Hage, W. , Knobloch, K. , and Meyer, R. , 2007, “ Exploratory Experiments on Machined Riblets for 2-D Compressor Blades,” ASME Paper No. IMECE2007-43457.
Wilcox, D. C. , 1988, “ Reassessment of the Scale-Determining Equation for Advanced Turbulence Models,” AIAA J., 26(11), pp. 1299–1309. [CrossRef]
Aupoix, B. , Pailhas, G. , and Houdeville, R. , 2010, “ Towards a General Strategy to Model Riblet Effects,” AIAA J., 50(3), pp. 708–716.
Aupoix, B. , Pailhas, G. , and Houdeville, R. , 2012, “ Toward a General Strategy to Model Riblet Effects,” AIAA J., 50(3), pp. 708–716. [CrossRef]
Mele, B. , and Tognaccini, R. , 2012, “ Numerical Simulation of Riblets on Airfoils and Wings,” 50th AIAA Aerospace Sciences Meeting, AIAA Paper No. AIAA2012-0861.
Mele, B. , and Tognaccini, R. , 2013, “ A Unified Model for Riblet Simulation in Complex Flow,” 21st Congresso AIMETA, Associazione Italiana di Meccanica Teorica e Applicata, Turin, Italy, Sept. 17–20, p. 47.
Mele, B. , Tognaccini, R. , and Catalano, P. , 2016, “ Performance Assessment of a Transonic Wing-Body Configuration,” J. Aircr., 53(1), pp. 129–140. [CrossRef]
Okabayashi, K. , Matsue, T. , Asai, M. , and Naito, H. , 2014, “ RANS Modeling for Flows on Riblets Based on Experimental Data,” 29th Congress of the International Council of the Aeronautical Sciences (ICAS), St. Petersburg, Russia, Sept. 7–12, pp. 1376–1384.
Saffman, P. , 1970, “ A Model for Inhomogeneous Turbulent Flow,” Proc. R. Soc. London, A317(1530), pp. 417–433. [CrossRef]
Walsh, M. , 1982, “ Turbulent Boundary Layer Drag Reduction Using Riblets,” 20th AIAA Aerospace Sciences Meeting, AIAA Paper No. AIAA 82-0169.
Walsh, M. , 1990, “ Riblets,” Viscous Flow Drag Reduction, Vol. 123, G. R. Hough , ed., AIAA, New York, pp. 168–184.
Luchini, P. , Manzo, F. , and Pozzi, A. , 1991, “ Resistance of Grooved Surface to Parallel Flow and Cross-Flow,” J. Fluid Mech., 228, pp. 87–109.
Fernholz, H.-H. , and Finley, P. , 1996, “ The Incompressible Zero-Pressure Gradient Turbulent Boundary Layer: An Assessment of the Data,” Prog. Aerosp. Sci., 32(4), pp. 245–311. [CrossRef]
Gaudet, L. , 1987, “ An Assessment of the Drag Reduction Properties of Riblets and the Penalties of Off-Design Conditions,” RAE Technical Memorandum, Memorandum No. Aero 2113.
Langtry, R. B. , and Menter, F. R. , 2009, “ Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes,” AIAA J., 47(12), pp. 2894–2906. [CrossRef]
Kügeler, E. , Nürnberger, D. , Weber, E. , and Engel, K. , 2008, “ Influence of Blade Fillets on the Performance of a 15 Stage Gas Turbine Compressor,” ASME Paper No. GT2008-50748.
Fiala, A. , and Kügeler, E. , 2011, “ Roughness Modeling for Turbomachinery,” ASME Paper No. GT2011-45424.
Herbst, F. , Fiala, A. , and Seume, J. R. , 2014, “ Modeling Vortex Generating Jet-Induced Transition in Low-Pressure Turbines,” ASME J. Turbomach., 136(7), p. 071005
Bode, C. , Aufderheide, T. , Kožulović, D. , and Friedrichs, J. , 2014, “ The Effects of Turbulence Length Scale on Turbulence and Transition Prediction in Turbomachinery Flows,” ASME Paper No. GT2014-27026.
Röber, T. , Kožulović, D. , Kügeler, E. , and Nürnberger, D. , 2006, “ Appropriate Turbulence Modeling for Turbomachinery Using a Two-Equation Turbulence Model,” New Results in Numerical and Experimental Fluid Mechanics, Vol. 92, pp. 446–454.
Lietmeyer, C. , Oehlert, K. , and Seume, J. , 2013, “ Optimal Application of Riblets on Compressor Blades and Their Contamination Behavior,” ASME J. Turbomach., 135(1), p. 011036.
Wison, D. , and Korakianitis, T. , 1998, The Design of High-Efficiency Turbomachinery and Gas Turbines, 2nd ed., Prentice-Hall, Upper Saddle River, NJ.

Figures

Grahic Jump Location
Fig. 1

Flow visualization of turbulent near-wall flow structures in the cross-sectional view (Lee and Lee [3]): (a) near-wall vortex over smooth surface and (b) near-wall vortex over ribbed surface in case of drag decreasing

Grahic Jump Location
Fig. 2

Effect of misalignment: Comparison of numerical approximation Eq. (16) with experimental data of Hage [8] left: trapezoidal riblets and right: V-shaped riblets

Grahic Jump Location
Fig. 3

Corrected and uncorrected functions of ΔU+ in the drag increasing regime for two different riblet-geometries

Grahic Jump Location
Fig. 4

Amplification of the riblet-effect due to adverse pressure gradient

Grahic Jump Location
Fig. 5

Global versus local Clauser parameter in the turbulent boundary layer on the suction side of the NACA6510 profile

Grahic Jump Location
Fig. 6

Numerical setup of the flat plate test case according to Sawyer and Winter [7] (LE:leading edge, TE: trailing edge; every second grid line shown)

Grahic Jump Location
Fig. 7

Skin friction coefficient versus unit Reynolds number. Comparison of the riblet-model with experimental data of Sawyer and Winter [7] and riblet-model of Aupoix et al. [34], V-shaped riblets, left: h = 0.39 mm s/h = 1.28 right: h = 0.48 mm, s/h = 2.08

Grahic Jump Location
Fig. 8

Definition of geometrical parameters of the NACA6510 test profile [52]

Grahic Jump Location
Fig. 9

Blocking, mesh, geometrical details, and reference positions of the NACA6510 cascade setup (every third grid line shown)

Grahic Jump Location
Fig. 10

Calculated versus experimental results. Left: integral loss reduction. Right: change in exit flow angle.

Grahic Jump Location
Fig. 11

Calculated versus experimental loss reduction for different misalignment angles of the riblet structures

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In