0
Research Papers

Influence of Combustor Swirl on Endwall Heat Transfer and Film Cooling Effectiveness at the Large Scale Turbine Rig

[+] Author and Article Information
Holger Werschnik

Mem. ASME
Institute of Gas Turbines and
Aerospace Propulsion,
Technische Universität Darmstadt,
Darmstadt 64287, Germany
e-mail: werschnik@glr.tu-darmstadt.de

Jonathan Hilgert

Institute of Gas Turbines and
Aerospace Propulsion,
Technische Universität Darmstadt,
Darmstadt 64287, Germany
e-mail: hilgert@glr.tu-darmstadt.de

Manuel Wilhelm

Institute of Gas Turbines and
Aerospace Propulsion,
Technische Universität Darmstadt,
Darmstadt 64287, Germany
e-mail: wilhelm@glr.tu-darmstadt.de

Martin Bruschewski

Institute of Gas Turbines and
Aerospace Propulsion,
Technische Universität Darmstadt,
Darmstadt 64287, Germany
e-mail: martin.bruschewski@uni-rostock.de

Heinz-Peter Schiffer

Professor
Mem. ASME
Institute of Gas Turbines and
Aerospace Propulsion,
Technische Universität Darmstadt,
Darmstadt 64287, Germany
e-mail: schiffer@glr.tu-darmstadt.de

1Corresponding author.

2Present Address: Universität Rostock, Institute of Fluid Mechanics, Albert-Einstein-Straße 2, Rostock 18059, Germany.

Contributed by the International Gas Turbine Institute (IGTI) of ASME for publication in the JOURNAL OF TURBOMACHINERY. Manuscript received July 12, 2016; final manuscript received January 10, 2017; published online March 28, 2017. Editor: Kenneth Hall.

J. Turbomach 139(8), 081007 (Mar 28, 2017) (12 pages) Paper No: TURBO-16-1152; doi: 10.1115/1.4035832 History: Received July 12, 2016; Revised January 10, 2017

At the large scale turbine rig (LSTR) at Technische Universität Darmstadt, Darmstadt, Germany, the aerothermal interaction of combustor exit flow conditions on the subsequent turbine stage is examined. The rig resembles a high pressure turbine and is scaled to low Mach numbers. A baseline configuration with an axial inflow and a swirling inflow representative for a lean combustor is modeled by swirl generators, whose clocking position toward the nozzle guide vane (NGV) leading edge can be varied. A staggered double-row of cylindrical film cooling holes on the endwall is examined. The effect of swirling inflow on heat transfer and film cooling effectiveness is studied, while the coolant mass flux rate is varied. Nusselt numbers are calculated using infrared thermography and the auxiliary wall method. Boundary layer, turbulence, and five-hole probe measurements as well as numerical simulations complement the examination. The results for swirling inflow show a decrease of film cooling effectiveness of up to 35% and an increase of Nusselt numbers of 10–20% in comparison to the baseline case for low coolant mass flux rates. For higher coolant injection, the heat transfer is on a similar level as the baseline. The differences vary depending on the clocking position. The turbulence intensity is increased to 30% for swirling inflow.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.

References

Turrell, M. D. , Stopford, P. J. , Syed, K. J. , and Buchanan, E. , 2004, “ CFD Simulation of the Flow Within and Downstream of a High-Swirl Lean Premixed Gas Turbine Combustor,” ASME Paper No. GT2004-53112.
Werschnik, H. , Krichbaum, A. , Schiffer, H.-P. , and Lehmann, K. , 2015, “ The Influence of Combustor Swirl on Turbine Stator Endwall Heat Transfer and Film Cooling Effectiveness in a 1.5-Stage Axial Turbine,” ISABE 2015, International Society of Air Breathing Engines, ed., Paper No. ISABE2015-20184.
Schmid, G. , Krichbaum, A. , Werschnik, H. , and Schiffer, H.-P. , “ The Impact of Realistic Inlet Swirl in a 1½ Stage Axial Turbine,” ASME Paper No. GT2014-26716.
Qureshi, I. , Smith, A. D. , and Povey, T. , 2013, “ Hp Vane Aerodynamics and Heat Transfer in the Presence of Aggressive Inlet Swirl,” ASME J. Turbomach., 135(2), p. 021040. [CrossRef]
Luque, S. , Kanjirakkad, V. , Aslanidou, I. , Lubbock, R. , Rosic, B. , and Uchida, S. , 2015, “ A New Experimental Facility to Investigate Combustor–Turbine Interactions in Gas Turbines With Multiple Can Combustors,” ASME J. Eng. Gas Turbines Power, 137(5), p. 051503. [CrossRef]
Jacobi, S. , Mazzoni, C. , Chana, K. , and Rosic, B. , 2016, “ Investigation of Unsteady Flow Phenomena in First Vane Caused by Combustor Flow With Swirl,” ASME Paper No. GT2016-57358.
Rosic, B. , Denton, J. D. , Horlock, J. H. , and Uchida, S. , 2012, “ Integrated Combustor and Vane Concept in Gas Turbines,” ASME J. Turbomach., 134(3), p. 031005. [CrossRef]
Insinna, M. , Salvadori, S. , and Martelli, F. , 2014, “ Simulation of Combustor/NGV Interaction Using Coupled Rans Solvers: Validation and Application to a Realistic Test Case,” ASME Paper No. GT2014-25433.
Vagnoli, S. , and Verstraete, T. , 2015, “ Numerical Study of the Combustor—Turbine Interaction Using Coupled Unsteady Solvers,” ISABE 2015, International Society of Air Breathing Engines, ed., Paper No. ISABE2015-20179.
Yin, H. , Liu, S. , Feng, Y. , Li, M. , Ren, J. , and Jiang, H. , 2015, “ Experimental Test Rig for Combustor-Turbine Interaction Research and Test Results Analysis,” ASME Paper No. GT2015-42209.
Koupper, C. , Gicquel, L. , Duchaine, F. , Bacci, T. , Facchini, B. , Picchi, A. , Tarchi, L. , and Bonneau, G. , 2016, “ Experimental and Numerical Calculation of Turbulent Timescales at the Exit of an Engine Representative Combustor Simulator,” ASME J. Eng. Gas Turbines Power, 138(2), p. 021503. [CrossRef]
Cha, C. M. , Hong, S. , Ireland, P. T. , Denman, P. , and Savarianandam, V. , 2012, “ Experimental and Numerical Investigation of Combustor-Turbine Interaction Using an Isothermal, Nonreacting Tracer,” ASME J. Eng. Gas Turbines Power, 134(8), p. 081501. [CrossRef]
Friedrichs, S. , 1997, “ Aerodynamic Aspects of Endwall Film-Cooling,” ASME J. Turbomach., 119(4), pp. 786–793. [CrossRef]
Han, J.-C. , Datta, S. , and Ekkad, S. , 2013, Gas Turbine Heat Transfer and Cooling Technology, 2nd ed., CRC Press/Taylor & Francis, Boca Raton, FL.
Thole, K. A. , Sinha, A. K. , Bogard, D. G. , and Crawford, M. E. , 1992, “ Mean Temperature Measurements of Jets With a Crossflow for Gas Turbine Film Cooling Application: Isromac-3,” 3rd International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-3), Honolulu, HI, Apr. 1–4, 1990, Paper No. A93-54626 24-34.
Baldauf, S. , Scheurlen, M. , Schulz, A. , and Wittig, S. , 2002, “ Correlation of Film-Cooling Effectiveness From Thermographic Measurements at Enginelike Conditions,” ASME J. Turbomach., 124(4), pp. 686–698. [CrossRef]
Benton, R. , Rabe, G. , Schiffer, H.-P. , and Berg, P. , 2005, “ Ballistic Cooling of Turbine Nozzle Guide Vane Platforms,” International Society of Air Breathing Engines (Hg.), Paper No. ISABE 2005-1113.
Thomas, M. , 2014, “ Optimization of Endwall Film-Cooling in Axial Turbines,” Ph.D., dissertation, University of Oxford, Oxford, UK.
Colban, W. F. , Lethander, A. T. , Thole, K. A. , and Zess, G. , 2003, “ Combustor Turbine Interface Studies—Part 2: Flow and Thermal Field Measurements,” ASME J. Turbomach., 125(2), pp. 203–209. [CrossRef]
Colban, W. F. , Thole, K. A. , and Zess, G. , 2003, “ Combustor Turbine Interface Studies—Part 1: Endwall Effectiveness Measurements,” ASME J. Turbomach., 125(2), pp. 193–202. [CrossRef]
Cresci, I. , Ireland, P. T. , Bacic, M. , Tibbott, I. , and Rawlinson, A. , 2015, “ Velocity and Turbulence Intensity Profiles Downstream of a Long Reach Endwall Double Row of Film Cooling Holes in a Gas Turbine Combustor Representative Environment,” ASME Paper No. GT2015-42307.
Gritsch, M. , Baldauf, S. , Martiny, M. , Schulz, A. , and Wittig, S. , 1999, “ The Superposition Approach to Local Heat Transfer Coefficients in High Density Ratio Film Cooling Flows,” ASME Paper No. 99-GT-168.
Goldstein, R. J. , and Spores, R. A. , 1988, “ Turbulent Transport on the Endwall in the Region Between Adjacent Turbine Blades,” ASME J. Heat Transfer, 110(4a), p. 862. [CrossRef]
Astarita, T. , and Carlomagno, G. M. , 2013, Infrared Thermography for Thermo-Fluid-Dynamics, Springer, Berlin.
Laveau, B. , Abhari, R. S. , Crawford, M. E. , and Lutum, E. , 2015, “ High Resolution Heat Transfer Measurements on the Stator Endwall of an Axial Turbine,” ASME J. Turbomach., 137(4), p. 041005. [CrossRef]
Xue, S. , Roy, A. , Ng, W. F. , and Ekkad, S. V. , 2015, “ A Novel Transient Technique to Determine Recovery Temperature, Heat Transfer Coefficient, and Film Cooling Effectiveness Simultaneously in a Transonic Turbine Cascade,” ASME J. Therm. Sci. Eng. Appl., 7(1), p. 011016. [CrossRef]
Nicklas, M. , 2001, “ Film-Cooled Turbine Endwall in a Transonic Flow Field—Part II: Heat Transfer and Film-Cooling Effectiveness,” ASME J. Turbomach., 123(4), pp. 720–729. [CrossRef]
Werschnik, H. , Ostrowski, T. , Hilgert, J. , Schneider, M. , and Schiffer, H.-P. , 2015, “ Infrared Thermography to Study Endwall Cooling and Heat Transfer in Turbine Stator Vane Passages Using the Auxiliary Wall Method and Comparison to Numerical Simulations,” J. Quant. Infrared Thermogr., 12(2), pp. 219–236. [CrossRef]
Krichbaum, A. , Werschnik, H. , Wilhelm, M. , Schiffer, H.-P. , and Lehmann, K. , “ A Large Scale Turbine Test Rig for the Investigation of High Pressure Turbine Aerodynamics and Heat Transfer With Variable Inflow Conditions,” ASME Paper No. GT2015-43261.
Klinger, H. , Lazik, W. , and Wunderlich, T. , 2008, “ The Engine 3E Core Engine,” ASME Paper No. GT2008-50679.
Lohrengel, J. , and Todtenhaupt, R. , 1996, “ Wärmeleitfähigkeit, Gesamtemissionsgrad und Spektrale Emissionsgrade der Beschichtung Nextel-Velvet-Coating 811 (RAL 900 15 Tiefschwarz Matt): (Engl.: Thermal Conductivity, Total Emissivity and Spectral Emissivity of the Coating Nextel-Velvet-Coating 811),” PTB-Mitteilungen, 106, pp. 259–265.
Steinhausen, C. , 2015, “ Definition and Application of the Data Analysis Procedure for Heat Transfer and Film Cooling Effectiveness Measurements at the Large Scale Turbine Rig (LSTR),” Master thesis, TU Darmstadt, Darmstadt, Germany.
Schrewe, S. , 2014, “ Experimental Investigation of the Interaction Between Purge and Main Annulus Flow Upstream of a Nozzle Guide Vane in a Low Pressure Turbine,” Dr.-Ing. dissertation, Technische Universität Darmstadt, Darmstadt, Germany.
Nitsche, W. , and Brunn, A. , 2006, Strömungsmesstechnik 2, Aktualisierte und Bearbeitete Auflage ed., Springer-Verlag, Berlin.
Bruun, H. H. , 2002, Hot-Wire Anemometry: Principles and Signal Analysis, Oxford University Press, Oxford, UK.
Ertel, G. , 2006, “ Development of a Hot-Wire-Anemometry Calibration Procedure at Realistic Turbomachinery Conditions at High Subsonic Mach Numbers: Entwicklung Eines Hitzdrahtkalibrierverfahrens Unter Realen Turbomaschinenbedingungen bei Hohen Unterschallmachzahlen,” Diploma thesis, Technische Universität Berlin, Berlin.
Bacci, T. , Facchini, B. , Picchi, A. , Tarchi, L. , Koupper, C. , and Champion, J.-L. , 2015, “ Turbulence Field Measurements at the Exit of a Combustor Simulator Dedicated to Hot Streaks Generation,” ASME Paper No. GT2015-42218.
Bacci, T. , Caciolli, G. , Facchini, B. , Tarchi, L. , Koupper, C. , and Champion, J.-L. , 2015, “ Flowfield and Temperature Profiles Measurements on a Combustor Simulator Dedicated to Hot Streaks Generation,” ASME Paper No. GT2015-42217.
Dückershoff, R. , 2004, “ Filmkühlung in Gebieten mit Verzögerter Hauptströmung und in Bereichen Lokaler Strömungsablösung: (Engl.: Film Cooling in Areas of Decelerated Main Flow and in Areas of Local Separation),” Dr.-Ing. dissertation, BTU Cottbus, Aachen, Germany.
Klapdor, E. V. , 2011, “ Simulation of Combustor-Turbine Interaction in a Jet Engine,” Dr.-Ing. dissertation, Technische Universität Darmstadt, Darmstadt, Germany.
Joint Committee for Guides in Metrology, 2008, “ Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement,” Technical Report, Report No. 1.

Figures

Grahic Jump Location
Fig. 1

Experimental setup, view into test rig on NGV stage and coolant injection (left), schematic of RIDN coolant flow path (right, top), main flow measurement planes (ME), and boundary layer measurement planes (RE); see also Fig. 5 and illustration of swirler clocking positions (right, bottom)

Grahic Jump Location
Fig. 2

The auxiliary wall method [2]

Grahic Jump Location
Fig. 3

Linear regression procedure for data evaluation at points A and B in Fig. 4

Grahic Jump Location
Fig. 4

Experimental results, AX inflow, MFR 3

Grahic Jump Location
Fig. 5

Probes used for boundary layer measurements in the vicinity of the coolant injection in RE1-3

Grahic Jump Location
Fig. 6

Mesh features of swirler, NGV LE, and TE (top), computational domain (bottom)

Grahic Jump Location
Fig. 7

Comparison of experimental data and CFD results at turbine inlet plane (ME01), AX, SWP and SWL inflow, pitchwise average, MFR 3

Grahic Jump Location
Fig. 8

Coolant streamlines for AX, MFR 3, CFD result

Grahic Jump Location
Fig. 9

Boundary layer in RE1, AX, MFR 3

Grahic Jump Location
Fig. 10

Boundary layer influence of RIDN injection for AX, MFR 3, view from downstream

Grahic Jump Location
Fig. 11

Circumferential averages of turbulence intensities at the turbine inlet plane (ME01) obtained by hot-wire for AX, SWP, SWL

Grahic Jump Location
Fig. 12

Turbulence intensity, view downstream on the turbine inlet plane (ME01), HWA data for SWP inflow, MFR 3. SWL shows a similar shifted peak off the swirler axis.

Grahic Jump Location
Fig. 13

Experimental results for SWP (top) and SWL (bottom) inflow, MFR 3

Grahic Jump Location
Fig. 14

Mach number in turbine inlet plane (ME01), SWP (top) and SWL (bottom) inflow, MFR 3, HWA data

Grahic Jump Location
Fig. 15

Nusselt numbers, SWL clocking, MFR 0

Grahic Jump Location
Fig. 16

Area-averaged results, normalized to values at AX inflow, MFR 0.8

Grahic Jump Location
Fig. 17

Comparison of IR and gas concentration data, AX MFR3

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In