Computational Simulation of Deposition in a Cooled High-Pressure Turbine Stage with Hot Streaks

[+] Author and Article Information
Robin Prenter

Aerospace Research Center The Ohio State University Columbus, Ohio 43235

Ali Ameri

Aerospace Research Center The Ohio State University Columbus, Ohio 43235

Jeffrey P. Bons

Aerospace Research Center The Ohio State University Columbus, Ohio 43235

1Corresponding author.

ASME doi:10.1115/1.4036008 History: Received January 18, 2017; Revised February 07, 2017


Ash particle deposition in a high-pressure turbine stage was numerically investigated using steady (RANS) and unsteady (URANS) methods. An inlet temperature profile consisting of Gaussian non-uniformities (hot streaks) was imposed on the vanes, with vane cooling simulated using a constant vane wall temperature. The steady case utilized a mixing plane at the vane-rotor interface, while a sliding mesh was used for the unsteady case. Corrected speed and mass flow were matched to an experiment involving the same geometry, so that the flow solution could be validated against measurements. Particles ranging from 1 to 65 µm were introduced into the vane domain, and tracked using an Eulerian-Lagrangian tracking model. A novel particle rebound and deposition model was employed to determine particles' stick/bounce behavior upon impact with a surface. Predicted impact and capture distributions for different diameters were compared between the steady and unsteady methods, highlighting effects from the circumferential averaging of the mixing plane. The mixing plane simulation was found to over predict impact and capture efficiencies compared with the unsteady calculation, as well as over predict particle temperature upon impact with the blade surface. Blade impact efficiencies increased with higher Stokes numbers in both simulations, with multiple rebounds occurring on the pressure surface in the mixing plane case, and on the suction surface in the unsteady case.

Copyright (c) 2017 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In