A Novel Suction Side Winglet Design Method for High Pressure Turbine Rotor Tips

[+] Author and Article Information
Chao Zhou

State Key Laboratory for Turbulence and Complex Systems; BIC-ESAT, Peking University; Collaborative Innovation Center of Advanced Aero-Engine, Beijing 100191, PR China

Fangpan Zhong

College of Engineering, Peking University, Beijing 100871, PR China

1Corresponding author.

ASME doi:10.1115/1.4037056 History: Received June 27, 2016; Revised May 15, 2017


Winglet tips are promising candidates for future high pressure turbine rotors. Many studies found that the design of the suction side winglet is the key to the aerodynamic performance of a winglet tip, but there is no general agreement on the exact design method. In this paper, a novel suction side winglet design method will be introduced. The winglets are obtained based on the near tip flow field of the datum tip geometry. The suction side winglet aims to reduce the tip leakage flow particularly in the front part of the blade passage. It is found that on the casing endwall, the pressure increases in the area where the winglet is used. This reduces the tip leakage flow in the front part of the blade passage and the pitchwise pressure gradient on the endwall. As a result, the size of the tip leakage vortex reduces. A surprising observation is that the novel winglet tip design eliminates the scraping vortex and results in a further increasing of the efficiency. The tip leakage loss of the novel winglet tip is 23% lower than the datum cavity tip, with an increase of tip surface area by only 20%. The spanwise deflection of the winglet due to the centrifugal force is small. Numerical simulation shows that in a turbine stage, this winglet tip increases the turbine stage efficiency by 0.9% at a tip gap size of 1% span compared with a cavity tip.

Copyright (c) 2017 by ASME
Your Session has timed out. Please sign back in to continue.






Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In