0
Research Papers

Influence of Rotor Tip Blockage on Near Stall Blade Vibrations in an Axial Compressor Rig

[+] Author and Article Information
Daniel Möller

Institute of Gas Turbines and
Aerospace Propulsion,
Technische Universität Darmstadt,
Darmstadt 64287, Germany
e-mail: moeller@glr.tu-darmstadt.de

Maximilian Jüngst

Institute of Gas Turbines and
Aerospace Propulsion,
Technische Universität Darmstadt,
Darmstadt 64287, Germany

Heinz-Peter Schiffer

Institute of Gas Turbines and Aerospace Propulsion,
Technische Universität Darmstadt,
Darmstadt 64287, Germany

Thomas Giersch, Frank Heinichen

Rolls-Royce Deutschland
Blankenfelde-Mahlow 15827, Germany

1Corresponding author.

Contributed by the International Gas Turbine Institute (IGTI) of ASME for publication in the JOURNAL OF TURBOMACHINERY. Manuscript received August 28, 2017; final manuscript received October 1, 2017; published online December 6, 2017. Editor: Kenneth Hall.

J. Turbomach 140(2), 021007 (Dec 06, 2017) (12 pages) Paper No: TURBO-17-1139; doi: 10.1115/1.4038316 History: Received August 28, 2017; Revised October 01, 2017

Rotor blade vibrations observed in the Darmstadt transonic compressor rig are investigated in this paper. The vibrations are nonsynchronous and occur in the near stall (NS) operating region. Rotor tip flow fluctuations traveling near the leading edge (LE) against the direction of rotation (in the rotor relative frame of reference) with about 50% blade tip speed are found to be the reason for the occurrence of the vibrations. The investigations show that the blockage at the rotor tip is an important factor for the aeroelastic stability of the compressor in the NS region. It is found that by application of a recirculating tip injection (TI) casing treatment, the aeroelastic stability increases as a result of reduced blockage in the rotor tip region.

Copyright © 2018 by ASME
Your Session has timed out. Please sign back in to continue.

References

Inoue, M. , Kuroumaru, M. , Tanino, T. , and Furukawa, M. , 2000, “ Propagation of Multiple Short-Length-Scale Stall Cells in an Axial Compressor Rotor,” ASME J. Turbomach., 122(1), pp. 45–54. [CrossRef]
Yamada, K. , Kikuta, H. , Iwakiri, K. , Furukawa, M. , and Gunjishima, S. , 2012, “ An Explanation for Flow Features of Spike-Type Stall Inception in an Axial Compressor Rotor,” ASME J. Turbomach., 135(2), p. 021023. [CrossRef]
Pullan, G. , Young, A. M. , Day, I. J. , Greitzer, E. M. , and Spakovszky, Z. S. , 2015, “ Origins and Structure of Spike-Type Rotating Stall,” ASME J. Turbomach., 137(5), p. 051007. [CrossRef]
Brandstetter, C. , Jüngst, M. , and Schiffer, H.-P. , 2017, “Measurements of Radial Vortices, Spill Forward and Vortex Breakdown in a Transonic Compressor,” ASME Paper No. GT2017-64576.
Vo, H. D. , Tan, C. S. , and Greitzer, E. M. , 2008, “ Criteria for Spike Initiated Rotating Stall,” ASME J. Turbomach., 130(1), p. 011023. [CrossRef]
Vo, H. D. , 2006, “Role of Tip Clearance Flow in the Generation of Non-Synchronous Vibrations,” AIAA Paper No. 2006-629.
Baumgartner, M. , Kameier, F. , and Hourmouziadis, J. , 1995, “Non-Engine Order Blade Vibration in a High Pressure Compressor,” Twelfth International Symposium on Airbreathing Engines (ISABE), Melbourne, Australia, Sept. 10–15, Paper No. ISABE-1995-7094. https://hal.archives-ouvertes.fr/hal-01353829/document
Kameier, F. , and Neise, W. , 1997, “ Rotating Blade Flow Instability as a Source of Noise in Axial Turbomachines,” J. Sound Vib., 203(5), pp. 833–853. [CrossRef]
Mailach, R. , Lehmann, I. , and Vogeler, K. , 2001, “ Rotating Instabilities in an Axial Compressor Originating From the Fluctuating Blade Tip Vortex,” ASME J. Turbomach., 123(3), pp. 453–460. [CrossRef]
März, J. , Hah, C. , and Neise, W. , 2002, “ An Experimental and Numerical Investigation Into the Mechanism of Rotating Instability,” ASME J. Turbomach., 124(3), pp. 367–374. [CrossRef]
Thomassin, J. , Vo, H. D. , and Mureithi, N. W. , 2011, “ The Tip Clearance Flow Resonance behind Axial Compressor Nonsynchronous Vibration,” ASME J. Turbomach., 133(4), p. 041030. [CrossRef]
Drolet, M. , Vo, H. D. , and Mureithi, N. W. , 2012, “ Effect of Tip Clearance on the Prediction of Nonsynchronous Vibrations in Axial Compressors,” ASME J. Turbomach., 135(1), p. 011023. [CrossRef]
Kielb, R. E. , Barter, J. W. , Thomas, J. P. , and Hall, K. C. , 2003, “Blade Excitation by Aerodynamic Instabilities—A Compressor Blade Study,” ASME Paper No. GT2003-38634.
Hah, C. , Bergner, J. , and Schiffer, H.-P. , 2008, “Tip Clearance Vortex Oscillation, Vortex Shedding and Rotating Instabilities in an Axial Transonic Compressor Rotor,” ASME Paper No. GT2008-50105.
Hah, C. , 2016, “Effects of Double-Leakage Tip Clearance Flow on the Performance of a Compressor Stage With Large Rotor Tip Gap,” ASME Paper No. GT2016-56050.
Holzinger, F. , Wartzek, F. , Jüngst, M. , Schiffer, H.-P. , and Leichtfuß, S. , 2016, “ Self-Excited Blade Vibration Experimentally Investigated in Transonic Compressors: Rotating Instabilities and Flutter,” ASME J. Turbomach., 138(4), p. 041006. [CrossRef]
Holzinger, F. , 2017, “ Coupling of Tip Leakage Flow and Blade Vibration in Transonic Compressors—Mechanism and Countermeasures,” Ph.D. thesis, Technische Universität Darmstadt, Darmstadt, Germany.
Leichtfuß, S. , 2015, “ Zum Einfluss des Spaltwirbels auf das aeroelastische Verhalten transsonischer Verdichter,” Ph.D. thesis, Technische Universität Darmstadt, Darmstadt, Germany.
Möller, D. , Jüngst, M. , Holzinger, F. , Brandstetter, C. , Schiffer, H.-P. , and Leichtfuß, S. , 2016, “ Mechanism of Nonsynchronous Blade Vibration in a Transonic Compressor Rig,” ASME J. Turbomach., 139(1), p. 011002. [CrossRef]
Möller, D. , Jüngst, M. , Holzinger, F. , Brandstetter, C. , Schiffer, H.-P. , and Leichtfuß, S. , 2016, “ Numerical Investigation of Tip Clearance Flow Induced Flutter in an Axial Research Compressor,” ASME Paper No. GT2016-56956.
Schulze, G. , Blaha, C. , Hennecke, D. K. , and Henne, J. M. , 1995, “ The Performance of a New Axial Single Stage Transonic Compressor,” Twelfth International Symposium on Airbreathing Engines (ISABE), Melbourne, Australia, Sept. 10–15, Paper No. ISABE-1995-7072 https://www.tib.eu/en/search/id/TIBKAT%3A216359104/The-performance-of-a-new-axial-single-stage-transonic/.
Biela, C. , Brandstetter, C. , Holzinger, F. , and Schiffer, H.-P. , 2011, “ Influence of Inlet Guide Vane Wakes on Performance and Stability of a Transonic Compressor,” International Symposium on Airbreathing Engines (ISABE), Gothenburg, Sweden, Sept. 12–16, Paper No. ISABE-2011-1209. http://tubiblio.ulb.tu-darmstadt.de/61636/
Brandstetter, C. , Kegalj, M. , Biela, C. , and Schiffer, H.-P. , 2011, “ PIV-Measurements in a Transonic Compressor Test Rig With Variable Inlet Guide Vanes,” International Symposium on Airbreathing Engines (ISABE), Gothenburg, Sweden, Sept. 12–16, Paper No. ISABE-2011-1222. http://tubiblio.ulb.tu-darmstadt.de/74497/
Jüngst, M. , Holzinger, F. , Möller, D. , Wartzek, F. , and Schiffer, H.-P. , 2015, “ The Analysis of Blade Vibrations of a 1.5-Stage Transonic Compressor,” ISUAAAT14, Stockholm, Sweden, Sept. 8–11, Paper No. I14-S9-1. http://tubiblio.ulb.tu-darmstadt.de/82645/
Gümmer, V. , and Rolls-Royce Deutschland Ltd & Co KG, 2004, “Turbomachine With Integrated Fluid Recirculation System,” Rolls-Royce Deutschland Ltd & Co KG, Blankenfelde-Mahlow, Germany, Patent No. EP 1382855 A3. https://encrypted.google.com/patents/EP1382855A3?cl=en&hl=en&output=html_text
Brandstetter, C. , Wartzek, F. , Werner, J. , Schiffer, H.-P. , and Heinichen, F. , 2016, “ Unsteady Measurements of Periodic Effects in a Transonic Compressor With Casing Treatments,” ASME J. Turbomach., 138(5), p. 051007. [CrossRef]
Brandstetter, C. , 2015, “Aerodynamische Stabilisierung transsonischer Axialverdichter: Eine experimentelle Untersuchung der Blattspitzenströmung unter dem Einfluss von Gehäusestrukturierungen,” Ph.D. thesis, Technische Universität Darmstadt, Darmstadt, Germany.
Jüngst, M. , Holzinger, F. , Schiffer, H.-P. , and Leichtfuß, S. , 2015, “ Analysing Non-Synchronous Blade Vibrations in a Transonic Compressor Rotor,” 11th European Conference on Turbomachinery (ETC), Madrid, Spain, Mar. 23–27, Paper No. ETC2015-079 http://aerospace-europe.eu/media/books/ETC2015-079.pdf.
Sayma, A. I. , Vahdati, M. , and Imregun, M. , 2000, “ An Integrated Nonlinear Approach for Turbomachinery Forced Response Prediction—Part I: Formulation,” J. Fluids Struct., 14(1), pp. 87–101. [CrossRef]
Vahdati, M. , Sayma, A. I. , and Imregun, M. , 2000, “ An Integrated Nonlinear Approach for Turbomachinery Forced Response Prediction—Part II: Case Studies,” J. Fluids Struct., 14(1), pp. 103–125. [CrossRef]
Spalart, P. R. , and Allmaras, S. R. , 1992, “ A One-Equation Turbulence Model for Aerodynamic Flows,” AIAA Paper No. 92-0439.
Riemann, B. , 1860, “Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite,” Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, Vol. 8, Königliche Gesellschaft der Wissenschaften, Göttingen, Germany.
Hoeger, M. , Fritsch, G. , and Bauer, D. , 1999, “ Numerical Simulation of the Shock-Tip Leakage Vortex Interaction in a HPC Front Stage,” ASME J. Turbomach., 121(3), pp. 456–468. [CrossRef]

Figures

Grahic Jump Location
Fig. 3

Spectrogram of WPT and strain gauge during continuous throttling at compressor stability limit (data from Ref. [16]) for (a) NG case and (b) LG case

Grahic Jump Location
Fig. 4

Characteristics for NG, LG, TI, and TIM simulation in comparison to experimental data from Refs. [16] and [27]

Grahic Jump Location
Fig. 2

Second (M2) and fourth eigenmode (M4) of the rotor blades

Grahic Jump Location
Fig. 1

Schematic view of test compressor with TI casing treatment (figure not to scale)

Grahic Jump Location
Fig. 6

Definitions for investigation of rotor tip flow: (a) tip clearance flow and (b) displacement thickness by axial flow reversal Δ

Grahic Jump Location
Fig. 5

Relative Mach number at 95% channel height (left) and blade static pressure (right) for NG case at NS operating point (figure not to scale)

Grahic Jump Location
Fig. 7

Rotor tip flow for NG at different operating points: (a) 100% RP mass flow, (b) 95% RP mass flow, (c) 89% RP mass flow, and (d) tip gap flow averaged over gap height

Grahic Jump Location
Fig. 8

NG case: entropy contours at rotor tip and isolines for Δ shown in % of mean channel height (Δ shown for one passage only, figure not to scale)

Grahic Jump Location
Fig. 10

Rotor tip flow for LG at 97% RP mass flow operating point

Grahic Jump Location
Fig. 9

NG case: Modal displacement and unsteady blade force for M2

Grahic Jump Location
Fig. 11

LG case: entropy contours at rotor tip and isolines for Δ shown in % of mean channel height (Δ shown for one passage only, figure not to scale)

Grahic Jump Location
Fig. 12

LG case: M4 unsteady blade force

Grahic Jump Location
Fig. 13

Circumferential cells from Fourier analysis of entropy around circumference behind rotor at 95% relative height: (a) NG case and (b) LG case

Grahic Jump Location
Fig. 14

Rotor tip flow for TI at 89% RP mass flow operating point (NS-NG)

Grahic Jump Location
Fig. 15

Rotor characteristics for simulations with TI, TIM, and different tip gap sizes

Grahic Jump Location
Fig. 16

Rotor tip flow for TI at NS-TI

Grahic Jump Location
Fig. 17

Flow at rotor LE near tip for NG case at NS-NG (left) and TIM(200%) case at NS-TIM(200%) (right)

Grahic Jump Location
Fig. 19

M2 aerodynamic damping over ND

Grahic Jump Location
Fig. 20

Mass flow through tip gap and average tip gap flow angle

Grahic Jump Location
Fig. 18

M2 aerodynamic work input at blade PS for NG case at NS-NG (left) and TI case at NS-TI (right)

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In