Mayle,
R. E.
, 1991, “
The 1991 IGTI Scholar Lecture: The Role of Laminar-Turbulent Transition in Gas Turbine Engines,” ASME J. Turbomach.,
113(4), pp. 509–536.

Hodson,
H. P.
, and
Howell,
R. J.
, 2005, “
Bladerow Interactions, Transition, and High-Lift Aerofoils in Low-Pressure Turbines,” Annu. Rev. Fluid Mech.,
37(1), pp. 71–98.

Stieger,
R. D.
, and
Hodson,
H. P.
, 2003, “
The Transition Mechanism of Highly-Loaded LP Turbine Blades,” ASME Paper No. GT2003-38304.

Pacciani,
R.
,
Marconcini,
M.
,
Arnone,
A.
, and
Bertini,
F.
, 2013, “
Predicting High-Lift Low-Pressure Turbine Cascades Flow Using Transition-Sensitive Turbulence Closures,” ASME J. Turbomach.,
136(5), p. 051007.

Keadle,
K.
, and
Mcquilling,
M.
, 2013, “
Evaluation of RANS Transition Modeling for High Lift LPT Flows at Low Reynolds Number,” ASME Paper No. GT2013–95069.

Praisner,
T. J.
,
Clark,
J. P.
,
Nash,
T. C.
,
Rice,
M. J.
, and
Grover,
E. A.
, 2006, “
Performance Impacts Due to Wake Mixing in Axial Flow Turbomachinery,” ASME Paper No. GT2006-90666.

Schmitt,
G.
, 2007, “
About Boussinesq's Turbulent Viscosity Hypothesis: Historical Remarks and a Direct Evaluation of Its Validity,” C. R. Mec. Elsevier Masson,
335(9–10), pp. 617–627.

Leschziner,
M.
, 2015, Statistical Turbulence Modelling for Fluid Dynamics - Demystified: An Introductory Text for Graduate Engineering Students,
World Scientific, London.

Rodi,
W.
, 1976, “
A New Algebraic Relation for Calculating the Reynolds Stresses,” Z. Angew. Math. Mech.,
56, pp. T219–T221.

Gatski,
T.
, and
Speziale,
C.
, 1993, “
On Explicit Algebraic Stress Models for Complex Turbulent Flows,” J. Fluid Mech.,
254(1), pp. 59–78.

Wallin,
S.
, and
Johansson,
A. V.
, 2000, “
An Explicit Algebraic Reynolds Stress Model for Incompressible and Compressible Turbulent Flows,” J. Fluid Mech.,
403, pp. 89–132.

Wang,
J.-X.
,
Wu,
J.-L.
, and
Xiao,
H.
, 2017, “
A Physics Informed Machine Learning Approach for Reconstructing Reynolds Stress Modeling Discrepancies Based on DNS Data,” Phys. Rev. Fluids,
2(3), p. 034603.

Duraisamy,
K.
,
Zhang,
Z. J.
, and
Singh,
A. P.
, 2015, “
New Approaches in Turbulence and Transition Modeling Using Data-Driven Techniques,” AIAA Paper No. AIAA 2015-1284.

Tracey,
B. D.
,
Duraisamy,
K.
, and
Alonso,
J. J.
, 2015, “
A Machine Learning Strategy to Assist Turbulence Model Development,” AIAA Paper No. AIAA 2015-1287.

Ferreira,
C.
, 2001, “
Gene Expression Programming: A New Adaptive Algorithm for Solving Problems,” Complex Syst.,
13(2), pp. 87–129.

Weatheritt,
J.
, and
Sandberg,
R. D.
, 2016, “
A Novel Evolutionary Algorithm Applied to Algebraic Modifications of the RANS Stress-Strain Relationship,” J. Comput. Phys.,
325, pp. 22–37.

Weatheritt,
J.
, and
Sandberg,
R. D.
, 2017, “
The Development of Algebraic Stress Models Using a Novel Evolutionary Algorithm,” Int. J. Heat Fluid Flow,
68, pp. 298–318.

Weatheritt,
J.
,
Pichler,
R.
,
Sandberg,
R. D.
,
Laskowski,
G.
, and
Michelassi,
V.
, 2017, “
Machine Learning for Turbulence Model Development Using a High Fidelity HPT Cascade Simulation,” ASME Paper No. GT2017–63497.

Lopez,
M.
, and
Walters,
D. K.
, 2016, “
Prediction of Transitional and Fully Turbulent Flow Using an Alternative to the Laminar Kinetic Energy Approach,” J. Turbul.,
17(3), pp. 253–273.

Michelassi,
V.
,
Chen,
L. W.
,
Pichler,
R.
, and
Sandberg,
R. D.
, 2015, “
Compressible Direct Numerical Simulation of Low Pressure Turbine—Part II: Effect of Inflow Disturbances,” ASME J. Turbomach.,
137(7), p. 071005.

Pope,
S. B.
, 1975, “
A More General Effective-Viscosity Hypothesis,” J. Fluid Mech.,
72(2), pp. 331–340.

Sandberg,
R. D.
,
Michelassi,
V.
,
Pichler,
R.
,
Chen,
L.
, and
Johnstone,
R.
, 2015, “
Compressible Direct Numerical Simulation of Low-Pressure Turbines—Part I: Methodology,” ASME J. Turbomach.,
137(5), p. 51011.

Stadtmüller,
P.
, and
Fottner,
L.
, 2001, “
A Test Case for the Numerical Investigation of Wake Passing Effects on a Highly Loaded LP Turbine Cascade Blade,” ASME Paper No. 2001-GT-0311.

Menter,
F. R.
, 1994, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,” AIAA J.,
32(8), pp. 1598–1605.

Spalart,
P. R.
, and
Allmaras,
S. R.
, 1992, “
A One-Equation Turbulence Model for Aerodynamic Flows,” 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, Jan. 6–9, p. 439.

Langtry,
R. B.
, and
Menter,
F. R.
, 2009, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes,” AIAA J.,
47(12), pp. 2894–2906.

Walters,
D. K.
, and
Cokljat,
D.
, 2008, “
A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier-Stokes Simulations of Transitional Flow,” ASME J. Fluids Eng.,
130(12), p. 121401.

Mayle,
R.
, and
Schulz,
A.
, 1997, “
The Path to Predicting Bypass Transition,” ASME J. Turbomach.,
119(3), pp. 405–411.

Dick,
E.
, and
Kubacki,
S.
, 2017, “
Transition Models for Turbomachinery Boundary Layer Flows: A Review,” Int. J. Turbomach., Propuls. Power,
2(2), p. 4.

Lopez,
M.
, and
Walters,
D. K.
, 2017, “
A Recommended Correction to the kT-kL-Omega Transition-Sensitive Eddy-Viscosity Model,” ASME J. Fluids Eng.,
139(2), p. 024501.

Parneix,
S.
,
Laurence,
D.
, and
Durbin,
P. A.
, 1998, “
A Procedure for Using DNS Databases,” ASME J. Fluids Eng.,
120(1), pp. 40–46.

Bode,
C.
,
Aufderheide,
T.
,
Friedrichs,
J.
, and
Kozulovic,
D.
, 2014, “
Improved Turbulence and Transition Prediction for Turbomachinery Flows,” ASME Paper No. IMECE2014–36866.

Akolekar,
H. D.
,
Sandberg,
R. D.
,
Hutchins,
N.
,
Michelassi,
V.
, and
Laskowski,
G.
, 2018, “
Machine-Learnt Turbulence Closures for LPTs With Unsteady Inflow Conditions,” 15th ISUAAAT, Oxford, UK, Sept. 24–29, Paper No. ISUAAAT-019.