0
Research Papers

Incidence Effect on the Aero-Thermal Performance of a Film Cooled Nozzle Vane Cascade

[+] Author and Article Information
H. Abdeh

Dipartimento di Ingegneria e Scienze Applicate,
Università degli Studi di Bergamo,
Dalmine 24044, BG, Italy
e-mail: hamed.abdeh@unibg.it

G. Barigozzi

Dipartimento di Ingegneria e Scienze Applicate,
Università degli Studi di Bergamo,
Dalmine 24044, BG, Italy
e-mail: giovanna.barigozzi@unibg.it

A. Perdichizzi

Dipartimento di Ingegneria e Scienze Applicate,
Università degli Studi di Bergamo,
Dalmine 24044, BG, Italy
e-mail: antonio.perdichizzi@unibg.it

M. Henze, J. Krueckels

Ansaldo Energia Switzerland Ltd.,
Baden 5401, Switzerland

Contributed by the International Gas Turbine Institute (IGTI) of ASME for publication in the JOURNAL OF TURBOMACHINERY. Manuscript received September 19, 2018; final manuscript received November 2, 2018; published online January 21, 2019. Editor: Kenneth Hall.

J. Turbomach 141(5), 051005 (Jan 21, 2019) (9 pages) Paper No: TURBO-18-1255; doi: 10.1115/1.4041923 History: Received September 19, 2018; Revised November 02, 2018

In the present paper, the influence of inlet flow incidence on the aerodynamic and thermal performance of a film cooled linear nozzle vane cascade is fully assessed. Tests have been carried out on a solid and a cooled cascade. In the cooled cascade, coolant is ejected at the end wall through a slot located upstream of the leading edge plane. Moreover, a vane showerhead cooling system is also realized through four rows of cylindrical holes. The cascade was tested at a high inlet turbulence intensity level (Tu1 = 9%) and at a constant inlet Mach number of 0.12 and nominal cooling condition, varying the inlet flow angle in the range ±20 deg. The aero-thermal characterization of vane platform was obtained through five-hole probe and end wall adiabatic film cooling effectiveness measurements. Vane load distributions and surface flow visualizations supported the discussion of the results. A relevant negative impact of positive inlet flow incidence on the cooled cascade aerodynamic and thermal performance was detected. A negligible influence was instead observed at negative incidence, even at the lowest tested value of −20 deg.

Copyright © 2019 by ASME
Your Session has timed out. Please sign back in to continue.

References

Syred, N. , and Khalatov, A. , 2006, Advanced Combustion and Aerothermal Technologies, Springer, Dordrecht, The Netherlands.
Dunn-Rankin, D. , and Therkelsen, P. , 2016, Lean Combustion Technology and Control, 2nd ed., Academic Press, Cambridge, MA.
Turrell, M. D. , Stopford, P. J. , Syed, K. J. , and Buchanan, E. , 2004, “ CFD Simulation of the Flow Within and Downstream of a High-Swirl Lean Premixed Gas Turbine Combustor,” ASME Paper No. GT2004-53112.
Insinna, M. , Griffini, D. , Salvadori, S. , and Martelli, F. , 2014, “ Conjugate Heat Transfer Analysis of a Film Cooled High-Pressure Turbine Vane Under Realistic Combustor Exit Flow Conditions,” ASME Paper No. GT2014-25280.
Insinna, M. , Griffini, D. , Salvadori, S. , and Martelli, F. , 2015, “ Effects of Realistic Inflow Conditions on the Aero-Thermal Performance of a Film-Cooled Vane,” 11th European Turbomachinery Conference (ETC11), Madrid, Spain, Mar. 23–27, Paper No. ETC2015-095. https://www.researchgate.net/publication/272442918_Effects_of_Realistic_Inflow_Conditions_on_the_Aero-Thermal_Performance_of_a_Film-Cooled_Vane
Griffini, D. , Insinna, M. , Salvadori, S. , and Martelli, F. , 2016, “ Clocking Effects of Inlet Nonuniformities in a Fully Cooled High-Pressure Vane: A Conjugate Heat Transfer Analysis,” ASME J. Turbomach., 138(2), p. 021006. [CrossRef]
Yin, H. , Qin, Y. , Ren, J. , and Jiang, H. , 2013, “ Effect of Inlet Swirl on the Model Leading Edge of Turbine Vane,” ASME Paper No. GT2013-94471.
Yin, H. , Liu, S. , Feng, Y. , Li, M. , Ren, J. , and Jiang, H. , 2015, “ Experimental Test Rig for Combustor-Turbine Interaction Research and Test Results Analysis,” ASME Paper No. GT2015-42209.
Qureshi, I. , Smith, A. D. , and Povey, T. , 2013, “ HP Vane Aerodynamics and Heat Transfer in the Presence of Aggressive Inlet Swirl,” ASME J. Turbomach., 135(2), p. 021040. [CrossRef]
Jacobi, S. , and Rosic, B. , 2017, “ Influence of Combustor Flow With Swirl on Integrated Combustor Vane Concept Full-Stage Performance,” ASME Paper No. GT2017-63785.
Giller, L. , and Schiffer, H. P. , 2012, “ Interactions Between the Combustor Swirl and the High Pressure Stator of a Turbine,” ASME Paper No. GT2012-69157.
Schmid, G. , and Schiffer, H. P. , 2012, “ Numerical Investigation of Inlet Swirl in a Turbine Cascade,” ASME Paper No. GT2012-69397.
Schmid, G. , Krichbaum, A. , Werschnik, H. , and Schiffer, H. P. , 2014, “ The Impact of Realistic Inlet Swirl in a 1 ½ Stage Axial Turbine,” ASME Paper No. GT2014-26716.
Werschnik, H. , Hilgert, J. , Bruschewski, M. , and Schiffer, H. P. , 2016, “ Combustor-Turbine Aerothermal Interaction in an Axial Turbine: Influence of Varied Inflow Conditions on Endwall Heat Transfer and Film Cooling Effectiveness,” ASME Paper No. GT2016-57171.
Hilgert, J. , Bruschewski , Werschnik, H. M. , and Schiffer, H. P. , 2017, “ Numerical Studies on Combustor-Turbine Interaction at the Large Scale Turbine Rig (LSTR),” ASME Paper No. GT2017-64504.
Werschnik, H. , Schneider, M. , Herrmann, J. , Ivanov, D. , Schiffer, H. P. , and Lyko, C. , 2017, “ The Influence of Combustor Swirl on Pressure Losses and the Propagation of Coolant Flows at the Large Scale Turbine Rig (LSTR): Experimental and Numerical Investigation,” Int. J. Turbomach. Propuls. Power, 2(3), p. 12. [CrossRef]
Shahpar, S. , and Caloni, S. , 2012, “ Aerodynamic Optimization of High Pressure Turbines for Lean-Burn Combustion System,” ASME Paper No. GT2012-69228.
Sieverding, C. H. , 1985, “ Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages,” ASME J. Eng. Gas Turbines Power, 107(2), pp. 248–257. [CrossRef]
Perdichizzi, A. , and Dossena, V. , 1993, “ Incidence Angle and Pitch-Chord Effects on Secondary Flows Downstream of a Turbine Cascade,” ASME J. Turbomach., 115, pp. 383–391. [CrossRef]
Dossena, V. , D'Ippolito, G. , and Pesatori, E. , 2004, “ Stagger Angle and Pitch-Chord Ratio Effects on Secondary Flows Downstream of a Turbine Cascade at Several Off-Design Conditions,” ASME Paper No. GT2004-54083.
Tsujita, H. , and Yamamoto, A. , 2014, “ Influences of Incidence Angle on 2D-Flow and Secondary Flow Structure in Ultra-Highly Loaded Turbine Cascade,” J. Therm. Sci., 23, pp. 13–21. [CrossRef]
Camci, G. , and Arts, T. , 1991, “ Effect of Incidence on Wall Heating Rates and Aerodynamics on a Film Cooled Transonic Turbine Cascade,” ASME J. Turbomach., 113, pp. 493–502. [CrossRef]
Kunze, M. , Vogeler, K. , Crawford, M. , and Brown, G. , 2014, “ Single and Multiple Row Endwall Film-Cooling of a Highly Loaded First Turbine Vane With Variation of Loading,” ASME J. Turbomach., 136(6), p. 061012. [CrossRef]
Craig, H. R. M. , and Cox, H. J. A. , 1971, “ Performance Estimation of Axial Flow Turbines,” Proc. Inst. Mech. Eng., 187, pp. 32–71.
Barigozzi, G. , Perdichizzi, A. , Henze, M. , and Krueckels, J. , 2015, “ Aerodynamic and Heat Transfer Characterization of a Nozzle Vane Cascade With and Without Platform Cooling,” ASME Paper No. GT2015-42845.
Barigozzi, G. , Mosconi, S. , Perdichizzi, A. , and Ravelli, S. , 2017, “ The Effect of Hot Streaks on a High Pressure Turbine Vane Cascade With Showerhead Film Cooling,” Int. J. Turbomach. Propuls. Power, 2(3), pp. 1–15. [CrossRef]
Perdichizzi, A. , Abdeh, H. , Barigozzi, G. , Henze, M. , and Krueckels, J. , 2017, “ Aero-Thermal Performance of a Nozzle Vane Cascade With a Generic Non Uniform Inlet Flow Condition—Part I: Influence of Nonuniformity Location,” ASME J. Turbomach., 139(3), p. 031002. [CrossRef]
Barigozzi, G. , Abdeh, H. , Perdichizzi, A. , Henze, M. , and Krueckels , 2017, “ Aero-Thermal Performance of a Nozzle Vane Cascade With a Generic Non Uniform Inlet Flow Condition—Part II: Influence of Purge and Film Cooling Injection,” ASME J. Turbomach., 139(10), p. 101004. [CrossRef]
Barigozzi, G. , Ravelli, S. , Abdeh, H. , Perdichizzi, A. , Henze, M. , and Krueckels, J. , 2017, “ Heat Transfer Analysis Over a Film Cooled Platform of a Vane Cascade With a Non Uniform Inlet Flow,” ASME Paper No. GT2017-64266.
Gregory-Smith, D. G. , Graves, C. P. , and Walsh, J. A. , 1988, “ Growth of Secondary Losses and Vorticity in an Axial Turbine Cascade,” ASME J. Turbomach., 110(1), pp. 1–8. [CrossRef]
Barigozzi, G. , Franchini, G. , and Perdichizzi, A. , 2007, “ The Effect of an Upstream Ramp on Cylindrical and Fan-Shaped Hole Film Cooling—Part II: Adiabatic Effectiveness Results,” ASME Paper No. GT2007-27079.
Camci, C. , Kim, K. , and Hippensteele, S. A. , 1992, “ A New Hue Capturing Technique for the Quantitative Interpretation of Liquid Crystal Images Used in Convective Heat Transfer Studies,” ASME J. Turbomach., 114(4), pp. 765–775. [CrossRef]
Chavez, K. F. , Packard, G. R. , Slavens, T. N. , and Bogard, D. G. , 2016, “ Experimentally Determined External Heat Transfer Coefficient of a New Turbine Airfoil Design at Varying Incidence Angles,” International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC), Honolulu, HI, Apr. 10–15, pp. 1–9. http://isromac-isimet.univ-lille1.fr/upload_dir/finalpaper/390.finalpaper.pdf

Figures

Grahic Jump Location
Fig. 2

Cascade model and vane and platform cooling schemes

Grahic Jump Location
Fig. 3

Setup for incidence variation: (a) i = −20 deg and (b) i = +20 deg

Grahic Jump Location
Fig. 4

Inlet boundary layer (X/cax = −1.6 - i = 0 deg)

Grahic Jump Location
Fig. 5

Inlet flow: (a) angle and (b) Ma distributions at X/cax = −0.35

Grahic Jump Location
Fig. 6

Vane load at variable incidence (Z/H = 0.5)

Grahic Jump Location
Fig. 7

ζ distributions (X/cax = 1.5 - Ma1 = 0.12) for variable i: (a) −20 deg, (b) −10 deg, (c) 0 deg, (d) +10 deg, and (e) +20 deg

Grahic Jump Location
Fig. 8

Ω distributions (X/cax = 1.5 - Ma1 = 0.12) for variable i: (a) −20 deg, (b) −10 deg, (c) 0 deg, (d) +10 deg, and (e) +20 deg

Grahic Jump Location
Fig. 9

End wall visualization: (a) i = −20 deg, (b) i = 0 deg, and (c) i = 20 deg

Grahic Jump Location
Fig. 10

Suction side visualization: (a) i = −20 deg, (b) i = 0 deg, and (c) i = 20 deg

Grahic Jump Location
Fig. 11

Spanwise (a) loss distribution (primary) and (b) flow angle deviation for variable i (X/cax = 1.5 - Ma1 = 0.12)

Grahic Jump Location
Fig. 12

Mass-averaged overall kinetic energy loss coefficient

Grahic Jump Location
Fig. 13

η distributions for variable i: (a) −20 deg, (b) −10 deg, (c) 0 deg, (d) +10 deg, and (e) +20 deg

Grahic Jump Location
Fig. 14

Pitch-averaged η distributions

Grahic Jump Location
Fig. 15

Area averaged η versus i

Tables

Errata

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In