0

IN THIS ISSUE

Newest Issue


Research Papers

Peters Andreas, Spakovszky Zoltán S., Lord Wesley K., et al. Ultrashort Nacelles for Low Fan Pressure Ratio Propulsors J. Turbomach. 137, 021001 (2014) (14 pages);   Paper No: TURBO-14-1120;   doi:10.1115/1.4028235

As the propulsor fan pressure ratio (FPR) is decreased for improved fuel burn, reduced emissions and noise, the fan diameter grows and innovative nacelle concepts with short inlets are required to reduce their weight and drag. This paper addresses the uncharted inlet and nacelle design space for low-FPR propulsors where fan and nacelle are more closely coupled than in current turbofan engines. The paper presents an integrated fan–nacelle design framework, combining a spline-based inlet design tool with a fast and reliable body-force-based approach for the fan rotor and stator blade rows to capture the inlet–fan and fan–exhaust interactions and flow distortion at the fan face. The new capability enables parametric studies of characteristic inlet and nacelle design parameters with a short turn-around time. The interaction of the rotor with a region of high streamwise Mach number at the fan face is identified as the key mechanism limiting the design of short inlets. The local increase in Mach number is due to flow acceleration along the inlet internal surface coupled with a reduction in effective flow area. For a candidate short-inlet design with length over diameter ratio L/D = 0.19, the streamwise Mach number at the fan face near the shroud increases by up to 0.16 at cruise and by up to 0.36 at off-design conditions relative to a long-inlet propulsor with L/D = 0.5. As a consequence, the rotor locally operates close to choke resulting in fan efficiency penalties of up to 1.6% at cruise and 3.9% at off-design. For inlets with L/D < 0.25, the benefit from reduced nacelle drag is offset by the reduction in fan efficiency, resulting in propulsive efficiency penalties. Based on a parametric inlet study, the recommended inlet L/D is suggested to be between 0.25 and 0.4. The performance of a candidate short inlet with L/D = 0.25 was assessed using full-annulus unsteady Reynolds-averaged Navier–Stokes (RANS) simulations at critical design and off-design operating conditions. The candidate design maintains the propulsive efficiency of the baseline case and fuel burn benefits are conjectured due to reductions in nacelle weight and drag compared to an aircraft powered by the baseline propulsor.

Biliotti Davide, Bianchini Alessandro, Vannini Giuseppe, et al. Analysis of the Rotordynamic Response of a Centrifugal Compressor Subject to Aerodynamic Loads Due to Rotating Stall J. Turbomach. 137, 021002 (2014) (8 pages);   Paper No: TURBO-14-1148;   doi:10.1115/1.4028246

In the current industrial research on centrifugal compressors, manufacturers are showing increasing interest in the extension of the minimum stable flow limit in order to improve the operability of each unit. The aerodynamic performance of a compressor stage is indeed often limited before surge by the occurrence of diffuser rotating stall. This phenomenon generally causes an increase of the radial vibrations, which, however, is not always connected with a remarkable performance detriment. In case the operating curve has been limited by a mechanical criterion, i.e., based on the onset of induced vibrations, an investigation on the evolution of the aerodynamic phenomenon when the flow rate is further reduced can provide some useful information. In particular, the identification of the real thermodynamic limit of the system could allow one to verify if the new load condition could be tolerated by the rotordynamic system in terms of radial vibrations. Within this context, recent works showed that the aerodynamic loads due to a vaneless diffuser rotating stall can be estimated by means of test-rig experimental data of the most critical stage. Moreover, by including these data into a rotordynamic model of the whole machine, the expected vibration levels in real operating conditions can be satisfactorily predicted. To this purpose, a wide-range analysis was carried out on a large industrial database of impellers operating in presence of diffuser rotating stall; the analysis highlighted specific ranges for the resultant rotating force in terms of intensity and excitation frequency. Moving from these results, rotordynamic analyses have been performed on a specific case study to assess the final impact of these aerodynamic excitations.

Zhang Luzeng, Yin Juan, Koo Moon Hee. The Effects of Vane Showerhead Injection Angle and Film Compound Angle on Nozzle Endwall Cooling (Phantom Cooling) J. Turbomach. 137, 021003 (2014) (12 pages);   Paper No: TURBO-14-1150;   doi:10.1115/1.4028291

The effects of airfoil showerhead (SH) injection angle and film-cooling hole compound angle on nozzle endwall cooling (second order film-cooling effects, also called "phantom cooling") were experimentally investigated in a scaled linear cascade. The test cascade was built based on a typical industrial gas turbine nozzle vane. Endwall surface phantom cooling film effectiveness measurements were made using a computerized pressure sensitive paint (PSP) technique. Nitrogen gas was used to simulate cooling flow as well as a tracer gas to indicate oxygen concentration such that film effectiveness can be obtained by the mass transfer analogy. Two separate nozzle test models were fabricated, which have the same number and size of film-cooling holes but different configurations. One had a SH angle of 45 deg and no compound angles on the pressure and suction side (SS) film holes. The other had a 30 deg SH angle and 30 deg compound angles on the pressure and SS film-cooling holes. Nitrogen gas (cooling air) was fed through nozzle vanes, and measurements were conducted on the endwall surface between the two airfoils where no direct film cooling was applied. Six cooling mass flow ratios (MFRs, blowing ratios) were studied, and local (phantom) film effectiveness distributions were measured. Film effectiveness distributions were pitchwise averaged for comparison. Phantom cooling on the endwall by the SS film injections was found to be insignificant, but phantom cooling on the endwall by the pressure side (PS) airfoil film injections noticeably helped the endwall cooling (phantom cooling) and was a strong function of the MFR. It was concluded that reducing the SH angle and introducing a compound angle on the PS injections would enhance the endwall surface phantom cooling, particularly for a higher MFR.

Terzis Alexandros, Ott Peter, Cochet Magali, et al. Effect of Varying Jet Diameter on the Heat Transfer Distributions of Narrow Impingement Channels J. Turbomach. 137, 021004 (2014) (9 pages);   Paper No: TURBO-14-1155;   doi:10.1115/1.4028294

The development of integrally cast turbine airfoils allows the production of narrow impingement channels in a double-wall configuration, where the coolant is practically injected within the wall of the airfoil providing increased heat transfer capabilities. This study examines the cooling performance of narrow impingement channels with varying jet diameters using a single exit design in an attempt to regulate the generated crossflow. The channel consists of a single row of five inline jets tested at two different channel heights and over a range of engine representative Reynolds numbers. Detailed heat transfer coefficient distributions are evaluated over the complete interior surfaces of the channel using the transient liquid crystal technique. Additionally, local jet discharge coefficients are determined by probe traversing measurements for each individual jet. A 10%-increasing and a 10%-decreasing jet diameter pattern are compared with a baseline geometry of uniform jet size distribution, indicating a considerable effect of varying jet diameter on the heat transfer level and the development of the generated crossflow.

De Maesschalck C., Lavagnoli S., Paniagua G. Blade Tip Carving Effects on the Aerothermal Performance of a Transonic Turbine J. Turbomach. 137, 021005 (2014) (10 pages);   Paper No: TURBO-14-1010;   doi:10.1115/1.4028326

Tip leakage flows in unshrouded high speed turbines cause large aerodynamic penalties, induce significant thermal loads and give rise to intense thermal stresses onto the blade tip and casing endwalls. In the pursuit of superior engine reliability and efficiency, the turbine blade tip design is of paramount importance and still poses an exceptional challenge to turbine designers. The ever-increasing rotational speeds and pressure loadings tend to accelerate the tip flow velocities beyond the transonic regime. Overtip supersonic flows are characterized by complex flow patterns, which determine the heat transfer signature. Hence, the physics of the overtip flow structures and the influence of the geometrical parameters require further understanding to develop innovative tip designs. Conventional blade tip shapes are not adequate for such high speed flows and hence, potential for enhanced performances lays in appropriate tip shaping. The present research aims to quantify the prospective gain offered by a fully contoured blade tip shape against conventional geometries such as a flat and squealer tip. A detailed numerical study was conducted on a modern rotor blade (Reynolds number of 5.5 × 105 and a relative exit Mach number of 0.9) by means of three-dimensional (3D) Reynolds-averaged Navier–Stokes (RANS) calculations. Two novel contoured tip geometries were designed based on a two-dimensional (2D) tip shape optimization in which only the upper 2% of the blade span was modified. This study yields a deeper insight into the application of blade tip carving in high speed turbines and provides guidelines for future tip designs with enhanced aerothermal performances.

Hergt Alexander, Klinner J., Steinert W., et al. The Effect of an Eroded Leading Edge on the Aerodynamic Performance of a Transonic Fan Blade Cascade J. Turbomach. 137, 021006 (2014) (11 pages);   Paper No: TURBO-14-1112;   doi:10.1115/1.4028215

Especially at transonic flow conditions the leading edge shape influences the performance of a fan profile. At the same time the leading edge of a fan profile is highly affected by erosion during operation. This erosion leads to a deformation of the leading edge shape and a reduction of the chord length. In the present experimental and numerical study, the aerodynamic performance of an original fan profile geometry is compared to an eroded fan profile with a blunt leading edge (BLE) and a chord length reduced by about 1%. The experiments are performed at a linear fan blade cascade in the Transonic Cascade Wind Tunnel of DLR in Cologne. The inflow Mach number during the tests is 1.25 and the Reynolds number 1.5 × 106. All tests are carried out at a low inflow turbulence level of 0.8%. The results of the investigation show that losses are increased over the whole operating range of the cascade. At the aerodynamic design point (ADP) the losses raise by 25%. This significant loss increase can be traced back to the increase of the shock losses at the leading edge. The change in shock structure is investigated and described in detail by means of particle image velocimetry (PIV) measurements and Schlieren imaging. Additionally, the unsteady fluctuation of the shock position is measured by a high-speed shadowgraphy. Then the frequency range of the fluctuation is obtained by a Fourier analysis of the time resolved shock position. Furthermore, liquid crystal measurements are performed in order to analyze the influence of the leading edge shape on the development of the suction side boundary layer. The results show that for the original fan blade the transition occurs at the shock position on the blade suction side by a separation bubble whereas the transition onset is shifted upstream for the fan blade with the BLE.

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In