0

IN THIS ISSUE

Newest Issue


Research Papers

Newton Peter, Martinez-Botas Ricardo, Seiler Martin. A Three-Dimensional Computational Study of Pulsating Flow Inside a Double Entry Turbine J. Turbomach. 137, 031001 (2014) (10 pages);   Paper No: TURBO-14-1116;   doi:10.1115/1.4028217

The double entry turbine contains two different gas entries, each feeding 180 deg of a single rotor wheel. This geometry can be beneficial for use in turbocharging and is uniquely found in this application. The nature of the turbocharging process means that the double entry turbine will be fed by a highly pulsating flow from the exhaust of an internal combustion engine, most often with out-of-phase pulsations in each of the two entries. Until now research on the double entry turbine under pulsating flow conditions has been limited to experimental work. Although this is of great value in showing how pulsating flow will affect the performance of the double entry turbine, the level of detail with which this can be studied is limited. This paper is the first to use a three-dimensional computational analysis to study the flow structures within a double entry turbine under conditions of pulsating flow. The analysis looks at one condition of pulsating flow with out-of-phase pulsations. The computational results are validated against experimental data taken from the turbocharger test facility at Imperial College and a good agreement is found. The analysis first looks at the degree of mass flow storage within different components of the turbine and discusses the effect on the performance of the turbine. Each of the volute limbs is found to be subject to a large degree of mass storage throughout a pulse cycle demonstrating a definite impact of the unsteady flow. The rotor wheel shows a much smaller degree of mass flow storage overall due to the pulsating flow; however, each rotor passage is subject to a much larger degree of mass flow storage due to the instantaneous flow inequality between the two volute inlets. This is a direct consequence of the double entry geometry. The following part of the analysis studies the loss profile within the turbine under pulsating flow using the concept of entropy generation rate. A significant change in the loss profile of the turbine is found throughout the period of a pulse cycle showing a highly changing flow regime. The major areas of loss are found to be due to tip leakage flow and mixing within the blade passage.

Mayo Ignacio, Arts Tony, El-Habib Ahmed, et al. Two-Dimensional Heat Transfer Distribution of a Rotating Ribbed Channel at Different Reynolds Numbers J. Turbomach. 137, 031002 (2014) (11 pages);   Paper No: TURBO-14-1164;   doi:10.1115/1.4028458

The convective heat transfer distribution in a rib-roughened rotating internal cooling channel was measured for different rotation and Reynolds numbers, representative of engine operating conditions. The test section consisted of a channel of aspect ratio equal to 0.9 with one wall equipped with eight ribs perpendicular to the main flow direction. The pitch to rib height ratio was 10 and the rib blockage was 10%. The test rig was designed to provide a uniform heat flux boundary condition over the ribbed wall, minimizing the heat transfer losses and allowing temperature measurements at significant rotation rates. Steady-state liquid crystal thermography (LCT) was employed to quantify a detailed 2D distribution of the wall temperature, allowing the determination of the convective heat transfer coefficient along the area between the sixth and eighth rib. The channel and all the required instrumentation were mounted on a large rotating disk, providing the same spatial resolution and measurement accuracy as in a stationary rig. The assembly was able to rotate both in clockwise and counterclockwise directions, so that the investigated wall was acting either as leading or trailing side, respectively. The tested Reynolds number values (based on the hydraulic diameter of the channel) were 15,000, 20,000, 30,000, and 40,000. The maximum rotation number values were ranging between 0.12 (Re = 40,000) and 0.30 (Re = 15,000). Turbulence profiles and secondary flows modified by rotation have shown their impact not only on the average value of the heat transfer coefficient but also on its distribution. On the trailing side, the heat transfer distribution flattens as the rotation number increases, while its averaged value increases due to the turbulence enhancement and secondary flows induced by the rotation. On the leading side, the secondary flows counteract the turbulence reduction and the overall heat transfer coefficient exhibits a limited decrease. In the latter case, the secondary flows are responsible for high heat transfer gradients on the investigated area.

Ubben Stefan, Niehuis Reinhard. Experimental Investigation of the Diffuser Vane Clearance Effect in a Centrifugal Compressor Stage With Adjustable Diffuser Geometry—Part I: Compressor Performance Analysis J. Turbomach. 137, 031003 (2014) (10 pages);   Paper No: TURBO-14-1165;   doi:10.1115/1.4028297

Adjustable diffuser vanes offer an attractive design option for centrifugal compressors applied in industrial applications. However, the knowledge about the impact on compressor performance of a diffuser vane clearance between vane and diffuser wall is still not satisfying. This two-part paper summarizes results of experimental investigations performed with an industrial-like centrifugal compressor. Particular attention was directed toward the influence of the diffuser clearance on the operating behavior of the entire stage, the pressure recovery in the diffuser, and on the diffuser flow by a systematic variation of the parameters diffuser clearance height, diffuser vane angle, radial gap between impeller exit and diffuser inlet, and rotor speed. Compressor map measurements provide a summary of the operating behavior related to diffuser geometry and impeller speed, whereas detailed flow measurements with temperature and pressure probes allow a breakdown of the losses between impeller and diffuser and contribute to a better understanding of relevant flow phenomena. The results presented in Part I show that an one-sided diffuser clearance does not necessarily has a negative impact on the operation and loss behavior of the centrifugal compressor, but instead may contribute to an increased pressure ratio and improved efficiency as long as the diffuser passage is broad enough with respect to the clearance height. The flow phenomena responsible for this detected performance behavior are exposed in Part II, where the results of detailed measurements with pressure probes at diffuser exit and particle image velocimetry (PIV) measurements conducted inside the diffuser channel are discussed. The experimental results are published as an open computational fluid dynamics (CFD) testcase “Radiver 2.”

Ubben Stefan, Niehuis Reinhard. Experimental Investigation of the Diffuser Vane Clearance Effect in a Centrifugal Compressor Stage With Adjustable Diffuser Geometry: Part II—Detailed Flow Analysis J. Turbomach. 137, 031004 (2014) (10 pages);   Paper No: TURBO-14-1167;   doi:10.1115/1.4028298

Adjustable diffuser vanes offer an attractive design option for centrifugal compressors applied in industrial applications. However, the knowledge about the impact on compressor performance of a diffuser vane clearance between vane and diffuser wall is still not satisfying. This two-part paper summarizes results of experimental investigations performed with an industrial-like centrifugal compressor. Particular attention was directed toward the influence of the diffuser clearance on the operating behavior of the entire stage, the pressure recovery in the diffuser, and on the diffuser flow by a systematic variation of the parameters diffuser clearance height, diffuser vane angle, radial gap between impeller exit and diffuser inlet, and rotor speed. In Part I it was shown that an one-sided diffuser clearance is able to contribute to an increase in flow range, stall margin, pressure ratio, and efficiency. In order to reveal the relevant flow phenomena, in Part II the results of detailed measurements of the pressure distribution at diffuser exit and particle image velocimetry (PIV) measurements inside the diffuser channel performed at three clearance configurations and three diffuser angles at a fixed radial gap are discussed. It was found that, for defined diffuser configurations, the clearance flow amplifies the diffuser throat vortex capable to reduce the loading of the highly loaded vane pressure side and to support a more homogenous diffuser flow. It turned out that the co-action of the geometry parameter diffuser vane angle and diffuser clearance height is of particular importance. The experimental results are published as an open computational fluid dynamics (CFD) testcase “Radiver 2.”

Binder Christian, Kinell Mats, Utriainen Esa, et al. Experimental Study on Pressure Losses in Circular Orifices for the Application in Internal Cooling Systems J. Turbomach. 137, 031005 (2014) (10 pages);   Paper No: TURBO-14-1171;   doi:10.1115/1.4028347

The cooling air flow in a gas turbine is governed by the flow through its internal passages and controlled by restrictors such as circular orifices. If the cooling air flow is incorrectly controlled, the durability and mechanical integrity of the whole turbine may be affected. Consequently, a good understanding of the orifices in the internal passages is important. This study presents experimental results for a range of pressure ratios and length-to-diameter ratios common in gas turbines including even very small pressure ratios. Additionally, the chamfer depth at the inlet was also varied. The results of the chamfer depth variation confirmed its beneficial influence on decreasing pressure losses. Moreover, important effects were noted when varying more than one parameter at a time. Besides earlier mentioned hysteresis at the threshold of choking, new phenomena were observed, e.g., a rise of the discharge coefficient for certain pressure and length-to-diameter ratios. A correlation for the discharge coefficient was attained based on the new experimental data with a generally lower error than previous studies.

Aschenbruck Jens, Seume Joerg R. Experimentally Verified Study of Regeneration-Induced Forced Response in Axial Turbines J. Turbomach. 137, 031006 (2014) (10 pages);   Paper No: TURBO-14-1177;   doi:10.1115/1.4028350

Geometrical variations occur in highly loaded turbine blades due to operation and regeneration. To determine the influence of such regeneration-induced variances of turbine blades on the aerodynamic excitation, a typical stagger angle variation of overhauled turbine blades is applied to stator vanes of an air turbine. This varied turbine stage is numerically and experimentally investigated. For the aerodynamic investigation of the vane wake, computational fluid dynamics (CFD) simulations are conducted. It is shown that the wake is changed due to the stagger angle variation. These results are confirmed by aerodynamic probe measurements in the air turbine. The vibration amplitude of the downstream rotor blades has been determined by a computational forced response analysis using a unidirectional fluid–structure interaction (FSI) approach and is experimentally verified here by tip-timing measurements. The results of the simulations and the measurements both show significantly higher amplitudes at certain operating points (OPs) due to the additional wake excitation. For typical regeneration-induced variations in stagger angle, the vibration amplitude is up to five times higher than in the reference case of uniform upstream stators. Based upon the present results, the influence of these variations and of the vane patterns on the vibration amplitude of the downstream rotor blade can and should be estimated in the regeneration process to minimize the dynamic stresses of the blades.

Wang Chen, Huang Lixi. Passive Noise Reduction for a Contrarotating Fan J. Turbomach. 137, 031007 (2014) (10 pages);   Paper No: TURBO-14-1189;   doi:10.1115/1.4028357

There has been renewed interest in the contrarotating (CR) fan configuration in aviation and other applications where size and weight are important design factors. Contra-rotation recovers swirl energy compared with the single-rotor design, but this advantage is not fully harnessed due to, perhaps, the issue of noise. This study explores passive noise reduction for a small, axial-flow, CR fan with perforated trailing-edge for the upstream rotor and perforated leading-edge for the downstream rotor. The fan is designed with simple velocity triangle analyses, which are checked by 3D flow computations. The aerodynamic consequence and the acoustic benefit of such perforated blading are investigated experimentally. The results show that there is a reduction of total pressure compared with the baseline CR fan at the same rotating speeds, but this is easily compensated for by slightly raising the rotating speeds. A reduction of 6–7 dB in overall noise is achieved for the same aerodynamic output, although there is a moderate noise increase in the high frequency range of 12.5–15.0 kHz due to blade perforations. The effect of inter-rotor separation distance is also investigated for the baseline design. A clear critical distance exists below which the increased spacing shows clear acoustic benefits.

Almeida P., Gibert C., Thouverez F., et al. Experimental Analysis of Dynamic Interaction Between a Centrifugal Compressor and Its Casing J. Turbomach. 137, 031008 (2014) (10 pages);   Paper No: TURBO-14-1174;   doi:10.1115/1.4028328

In turbomachinery, one way to improve aerodynamic performance and reduce fuel consumption consists of minimizing the clearance between rotor and casing. Yet, the probability of contact is increased and this may lead in some specific conditions to a large and even unstable excitation on the impeller and stator. To achieve better understanding of the dynamic behavior occurring during the blade-to-casing contact, many numerical studies have been conducted but only a few experiments have been reported in the literature thus far. The interaction experiment reported in this paper involves a low-pressure, rotating centrifugal compressor and its casing tested in a vacuum chamber. Contact is initiated by introducing a gap near zero, and certain events with significant dynamic levels are observed during the run-up. Measurements are performed using strain gauges on both the rotating and stationary parts and a scanning laser Doppler vibrometer on the stator. This research focuses on an analysis of the recorded data. Time series data are also analyzed by means of standard signal processing and a full spectrum analysis in order to identify the direction of traveling wave propagation on the two structures as well as nodal diameters and frequencies. The dynamic response of structures is accompanied by variations in other physical parameters such as temperature, static deformed shapes, speed, and torque. A wearing pattern is evaluated following the contact experiments. The spectral content of response is dominated by frequency modes excited by rotating speed harmonics as well as by sidebands due to inherent system nonlinearity.

Neupert Niklas, Ober Birger, Joos Franz. Experimental Investigation on Droplet Behavior in a Transonic Compressor Cascade J. Turbomach. 137, 031009 (2014) (8 pages);   Paper No: TURBO-14-1180;   doi:10.1115/1.4028351

In recent years, overspray fogging has become a powerful means for power augmentation of industrial gas turbines (GT). Most of the studies concerning this topic focus on the problem from a thermodynamic point of view. Only a few studies, however, were undertaken to investigate the droplet behavior in the flow channel of a compressor. In this paper, results of experimental investigation of a water laden flow through a transonic compressor cascade are presented. A finely dispersed spray was used in the measurements (D10 < 10 μm). Results of the droplet behavior are shown in terms of shadowgraphy images and images of the blade surface film pattern. The angle of attack, the incoming velocity, and the water load were varied. The qualitative observations are related to laser Doppler and phase Doppler anemometer (LDA/PDA) data taken in the flow channel and at the outlet of the cascade. The data represent a base for numerical and mean line models of two-phase compressor flow.

Li Jichao, Lin Feng, Tong Zhiting, et al. The Dual Mechanisms and Implementations of Stability Enhancement With Discrete Tip Injection in Axial Flow Compressors J. Turbomach. 137, 031010 (2014) (10 pages);   Paper No: TURBO-14-1183;   doi:10.1115/1.4028299

The mechanisms and implementation scheme of discrete tip air injection are studied in this paper. A map that summarized the routes to stall is then proposed. It is argued that there exists a critical tip clearance ratio that separates two different routes to stall, which infers that the stability enhancement can also be based on two different mechanisms. A summation of tip injection test data in the literatures demonstrates that this is actually the case. For each compressor, there are two trends in the curve of stall margin improvement (SMI) versus injected momentum ratio, which is separated by a demarcation ratio of injected momentum. A series of tests are done in a low-speed compressor to show that the micro injection, wherein the injected momentum ratio is less than the demarcation ratio, can only act on the tip leakage flow (TLF) and thus provide small SMI by weakening the self-induced unsteadiness of the tip leakage flow (UTLF), while in contrast the macro injection can provide much larger SMI by acting on the main flow, decreasing the inlet angle-of-attack and thus unloading the blade tip. Based on these findings, a novel detecting-actuating scheme is designed and implemented onto a low-speed axial compressor. A cross-correlation coefficient is used to detect the UTLF in the prestall process way before stall inception and then to guide the opening of proportional electromagnetic valves. The injected flow rate can be smoothly varied to cover both micro- and macro-injection, which saves energy when the compressor is stable, and provides protection when it is needed. The same principle is applied to a high-speed compressor with a recirculation injection and the preliminary test results are very encouraging.

Berdanier Reid A., Smith Natalie R., Fabian John C., et al. Humidity Effects on Experimental Compressor Performance—Corrected Conditions for Real Gases J. Turbomach. 137, 031011 (2014) (10 pages);   Paper No: TURBO-14-1185;   doi:10.1115/1.4028356

The effects of humid air on the performance of a multistage research compressor and new methods of humidity accounting to ensure appropriate representation of performance parameters are investigated in this paper. Turbomachinery textbooks present methods of correcting speed and mass flow rate using perfect gas assumptions, but these methods can reduce the ability to achieve repeatable compressor performance when using unconditioned air in a climate where absolute humidity may vary. Instead, a new method is introduced, which models humid air as a real gas and circumvents the need for assumptions in the correction process. In the area of compressor research, the ability to measure small changes in performance parameters and ensure repeatable results is essential. Errors of more than 0.5% can result from using perfect gas assumptions to calculate corrected speed, which can lead to misrepresented performance parameters beyond the uncertainty of the measurements. Multiplicative correction factors based on analytical data are also introduced as an alternate method of applying the new real-gas method, and these correction factors are compared to those derived by previous authors applying ideal gas methods for humidity accounting. This is the first time in open literature that experimental results for a component of a gas turbine engine are presented comparing a humid air correction method with traditional correction methods.

Andreini Antonio, Caciolli Gianluca, Facchini Bruno, et al. Experimental Investigation of the Flow Field and the Heat Transfer on a Scaled Cooled Combustor Liner With Realistic Swirling Flow Generated by a Lean-Burn Injection System J. Turbomach. 137, 031012 (2014) (9 pages);   Paper No: TURBO-14-1194;   doi:10.1115/1.4028330

Lean-burn swirl stabilized combustors represent the key technology to reduce NOx emissions in modern aircraft engines. The high amount of air admitted through a lean-burn injection system is characterized by very complex flow structures, such as recirculations, vortex breakdown, and processing vortex core, which may deeply interact in the near wall region of the combustor liner. This interaction and its effects on the local cooling performance make the design of the cooling systems very challenging, accounting for the design and commission of new test rigs for detailed analysis. The main purpose of the present work is the characterization of the flow field and the wall heat transfer due to the interaction of a swirling flow coming out from real geometry injectors and a slot cooling system which generates film cooling in the first part of the combustor liner. The experimental setup consists of a nonreactive three sector planar rig in an open loop wind tunnel; the rig, developed within the EU project Low Emissions Core-Engine Technologies (LEMCOTEC), includes three swirlers, whose scaled geometry reproduces the real geometry of an Avio Aero partially evaporated and rapid mixing (PERM) injector technology, and a simple cooling scheme made up of a slot injection, reproducing the exhaust dome cooling mass flow. Test were carried out imposing realistic combustor operating conditions, especially in terms of reduced mass flow rate and pressure drop across the swirlers. The flow field is investigated by means of particle image velocimetry (PIV), while the measurement of the heat transfer coefficient is performed through thermochromic liquid crystals (TLCs) steady state technique. PIV results show the behavior of flow field generated by the injectors, their mutual interaction, and the impact of the swirled main flow on the stability of the slot film cooling. TLC measurements, reported in terms of detailed 2D heat transfer coefficient maps, highlight the impact of the swirled flow and slot film cooling on wall heat transfer.

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In