0

IN THIS ISSUE

Newest Issue


Research Papers

Boudet Jérôme, Cahuzac Adrien, Kausche Philip, et al. Zonal Large-Eddy Simulation of a Fan Tip-Clearance Flow, With Evidence of Vortex Wandering J. Turbomach. 137(6), 061001 (2015) (9 pages);   Paper No: TURBO-13-1240;   doi:10.1115/1.4028668

The flow in a fan test-rig is studied with combined experimental and numerical methods, with a focus on the tip-leakage flow. A zonal RANS/LES approach is introduced for the simulation: the region of interest at tip is computed with full large-eddy simulation (LES), while Reynolds-averaged Navier–Stokes (RANS) is used at inner radii. Detailed comparisons with the experiment show that the simulation gives a good description of the flow. In the region of interest at tip, a remarkable prediction of the velocity spectrum is achieved, over about six decades of energy. The simulation precisely captures both the tonal and broadband contents. Furthermore, a detailed analysis of the simulation allows identifying a tip-leakage vortex (TLV) wandering, whose influence onto the spectrum is also observed in the experiment. This phenomenon might be due to excitation by upstream turbulence from the casing boundary layer and/or the adjacent TLV. It may be a precursor of rotating instability. Finally, considering the outlet duct acoustic spectrum, the vortex wandering appears to be a major contribution to noise radiation.

Gomatam Ramachandran Saiprashanth, Shih Tom I-P. Biot Number Analogy for Design of Experiments in Turbine Cooling J. Turbomach. 137(6), 061002 (2015) (14 pages);   Paper No: TURBO-14-1080;   doi:10.1115/1.4028327

Cooling of turbine components that come in contact with the hot gases strongly affects the turbine's efficiency and service life. Designing effective and efficient cooling configurations requires detailed understanding on how geometry and operating conditions affect the way coolant cools the turbine materials. Experimental measurements that can reveal such information are difficult and costly to obtain because gas turbines operate at high temperatures (up to 2000 K), high pressures (30+ bar), and the dimensions of many key features in the cooling configurations are small (millimeters or smaller). This paper presents a method that enables experiments to be conducted at near room temperatures, near atmospheric pressures, and using scaled-up geometries to reveal the temperature and heat-flux distributions within turbine materials as if the experiments were conducted under engine operating conditions. The method is demonstrated by performing conjugate computational fluid dynamics (CFD) analyses on two test problems. Both problems involve a thermal barrier coating (TBC)-coated flat plate exposed to a hot-gas environment on one side and coolant flow on the other. In one problem, the heat transfer on the coolant side is enhanced by inclined ribs. In the other, it is enhanced by an array of pin fins. This conjugate CFD study is based on 3D steady Reynolds-averaged Navier–Stokes (RANS) closed by the shear-stress-transport turbulence model for the fluid phase and the Fourier law for the solid phase. Results obtained show that, of the dimensionless parameters that are important to this problem, it is the Biot number that dominates. This study also shows that for two geometrically similar configurations, if the Biot number distributions on the corresponding hot-gas and coolant sides are nearly matched, then the magnitude and contours of the nondimensional temperature and heat-flux distributions in the material will be nearly the same for the two configurations—even though the operating temperatures and pressures differ considerably. Thus, experimental measurements of temperature and heat-flux distributions within turbine materials that are obtained under “laboratory” conditions could be scaled up to provide meaningful results under “engine” relevant conditions.

Niether Sebastian, Bobusch Bernhard, Marten David, et al. Development of a Fluidic Actuator for Adaptive Flow Control on a Thick Wind Turbine Airfoil J. Turbomach. 137(6), 061003 (2015) (10 pages);   Paper No: TURBO-14-1229;   doi:10.1115/1.4028654

Wind turbines are exposed to unsteady incident flow conditions such as gusts or tower interference. These cause a change in the blades' local angle of attack, which often leads to flow separation at the inner rotor sections. Recirculation areas and dynamic stall may occur, which lead to an uneven load distribution along the blade. In this work, a fluidic actuator is developed that reduces flow separation. The functional principle is adapted from a fluidic amplifier. High pressure air fed by an external supply flows into the interaction region of the actuator. Two control ports, oriented perpendicular to the inlet, allow for a steering of the actuation flow. One of the control ports is connected to the suction side, the other to the pressure side of the airfoil. Depending on the pressure difference that varies with the angle of attack, the actuation air is directed into one of four outlet channels. These guide the air to different chordwise exit locations on the airfoil's suction side. The appropriate actuation location adjusts automatically according to the pressure difference between the control ports and therefore incidence. Suction side flow separation is delayed as the boundary layer is enriched with kinetic energy. Experiments were conducted on a DU97-W-300 airfoil at Re = 2.2 × 105. Compared to the baseline, lift variations due to varying angles of attack were reduced by an order of magnitude. A Fast/Aerodyn simulation of a full wind turbine rotor was performed to show the real world load reduction potential. Additionally, system integration is discussed, which includes suggestions on producibility and operational details.

Nazmi Ilikan Ayhan, Ayder Erkan. Influence of the Sweep Stacking on the Performance of an Axial Fan J. Turbomach. 137(6), 061004 (2015) (13 pages);   Paper No: TURBO-13-1272;   doi:10.1115/1.4028767

In modern turbomachinery blade design, nonradial stacking of the profiles is often assumed to be one of the ways to improve the performance of a machine. Instead of stacking the profiles radially, the stacking line is changed by several modifications such as sweep, dihedral, lean, or a combination of these. Nonradial stacking influences secondary flows that have effects on the aerodynamic parameters such as efficiency, pressure rise, blade loading, and stall margin. However, many of the studies in literature are limited by the comparison of two or three cases. This situation leads to conflicting results because a modification may cause a positive effect in one study while in another one, the same modification may have a negative effect. In this study, a modified free vortex axial fan (named as base fan (BF) for this study) is designed first and the profiles of the blades are stacked radially by joining the centroids of the profiles. Second, 45 deg, 30 deg forward sweep (FS) and backward sweep (BS) modifications are applied. The effects of these modifications on aerodynamic performance of the fans are investigated by means of numerical calculations. The results show that FS and BS do not significantly affect the overall performance of the fan at the design flowrate in spite of the occurring modifications of the local blade pressure distribution. However, at low flowrates, FS and BS have positive and negative effects on the fan performance, respectively.

Coull John D., Atkins Nicholas R. The Influence of Boundary Conditions on Tip Leakage Flow J. Turbomach. 137(6), 061005 (2015) (10 pages);   Paper No: TURBO-14-1152;   doi:10.1115/1.4028796

Much of the current understanding of tip leakage flow has been derived from detailed cascade studies. Such experiments are inherently approximate since it is difficult to simulate the boundary conditions that are present in a real machine, particularly the secondary flows convecting from the upstream stator row and the relative motion of the casing and blade. The problem is further complicated when considering the high pressure turbine rotors of aero engines, where the high Mach numbers must also be matched in order to correctly model the aerodynamics and heat transfer of the leakage flow. More engine-representative tests can be performed on high-speed rotating turbines, but the experimental resolution achievable in such setups is limited. In order to examine the differences between cascade and engine boundary conditions, this paper presents a numerical investigation into the impact of inlet conditions and relative casing motion (RCM) on the leakage flow of a high-pressure turbine rotor. The baseline calculation uses a simplified inlet condition and no relative endwall motion, in typical cascade fashion. Only minor changes to the leakage flow are induced by introducing either a more realistic inlet condition or RCM. However, when both of these conditions are applied simultaneously, the pattern of leakage flow is significantly altered, with ingestion of flow over much of the early suction surface. The paper explores the physical processes driving the changes, the impact on performance and the implications for future experimental investigations.

Krug Andreas, Busse Peter, Vogeler Konrad. Experimental Investigation Into the Effects of the Steady Wake-Tip Clearance Vortex Interaction in a Compressor Cascade J. Turbomach. 137(6), 061006 (2015) (10 pages);   Paper No: TURBO-14-1244;   doi:10.1115/1.4028797

An important aspect of the aerodynamic flow field in the tip region of axial compressor rotors is the unsteady interaction between the tip clearance vortex (TCV) and the incoming stator wakes. In order to gain an improved understanding of the mechanics involved, systematic studies need to be performed. As a first step toward the characterization of the dynamic effects caused by the relative movement of the blade rows, the impact of a stationary wake-induced inlet disturbance on a linear compressor cascade with tip clearance will be analyzed. The wakes were generated by a fixed grid of cylindrical bars with variable pitch being placed at discrete pitchwise positions. This paper focuses on experimental studies conducted at the newly designed low-speed cascade wind tunnel in Dresden. The general tunnel configuration and details on the specific cascade setup will be presented. Steady state flow field measurements were carried out using five-hole probe traverses up- and downstream of the cascade and accompanied by static wall pressure readings. 2D-particle image velocimetry (PIV) measurements complemented these results by visualizing the blade-to-blade flow field. Hence, the structure of the evolving secondary flow system is evaluated and compared for all tested configurations.

Liu Xiaohua, Zhou Yanpei, Sun Xiaofeng, et al. Calculation of Flow Instability Inception in High Speed Axial Compressors Based on an Eigenvalue Theory J. Turbomach. 137(6), 061007 (2015) (9 pages);   Paper No: TURBO-14-1250;   doi:10.1115/1.4028768

This paper applies a theoretical model developed recently to calculate the flow instability inception point in axial high speed compressors system with tip clearance. After the mean flow field is computed by 3D steady computational fluid dynamics (CFD) simulation, a body force approach, which is a function of flow field data and comprises of one inviscid part and the other viscid part, is taken to duplicate the physical sources of flow turning and loss. Further by applying appropriate boundary conditions and spectral collocation method, a group of homogeneous equations will yield from which the stability equation can be derived. The singular value decomposition (SVD) method is adopted over a series of fine grid points in frequency domain, and the onset point of flow instability can be judged by the imaginary part of the resultant eigenvalue. The first assessment is to check the applicability of the present model on calculating the stall margin of one single stage transonic compressors at 85% rotational speed. The reasonable prediction accuracy validates that this model can provide an unambiguous judgment on stall inception without numerous requirements of empirical relations of loss and deviation angle. It could possibly be employed to check overcomputed stall margin during the design phase of new high speed compressors. The following validation case is conducted to study the nontrivial role of tip clearance in rotating stall, and a parameter study is performed to investigate the effects of end wall body force coefficient on stall onset point calculation. It is verified that the present model could qualitatively predict the reduced stall margin by assuming a simplified body force model which represents the response of a large tip clearance on the unsteady flow field.

Zhao Wei, Wu Bing, Xu Jianzhong. Aerodynamic Design and Analysis of a Multistage Vaneless Counter-Rotating Turbine J. Turbomach. 137(6), 061008 (2015) (12 pages);   Paper No: TURBO-14-1258;   doi:10.1115/1.4028871

A multistage vaneless counter-rotating turbine (MVCRT) eliminates vanes between rotors, which reduces the weight and size of the turbine and avoids viscous losses associated with vanes pronouncedly. An aircraft engine employing such a turbine would have greater thrust to weight ratio and smaller specific fuel consumption. This paper presents the aerodynamic design philosophy and performance analysis of the MVCRTs for gas turbine engines by a case study. The case is about a 1/2*4 turbine, which consists of a rotating frame and four rotors without any vanes between them. The first rotor and the third rotor are connected by a shaft to drive a compressor with a pressure ratio of 11.8, and the second rotor and the fourth rotor are connected by the rotating frame to deliver a total shaft power of around 2 MW. The stage loading of each rotor and flow axial acceleration of each duct are controlled to provide sufficient inlet swirls for their subsequent rotors. The stage work coefficients of each rotor are 0.95, 2.9, 1.4, and 1.0, respectively. Nonuniform radial circulation distributions are also used to maximize the turbine power output. Centrifugal forces in the outer rotor of the turbine are captured by carrying out a finite element analysis (FEA) to validate the aerodynamic design results. Three-dimensional viscous numerical results show that an adiabatic total-to-total efficiency of 91.47% with a pressure ratio of 9.8 at design condition is obtained and achieves the initial design objective very well. Entropy creation associated with the tip leakage and secondary flow is also illustrated for understanding the origins and effects of losses in the turbine. Pressure ratios and efficiency at the speed combinations of the 80% to 100% inner and outer rotor design speeds are discussed to reveal the turbine characteristics at off-design conditions.

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In