This paper proposes a control-oriented chemical reaction-based two-zone combustion model designed to accurately describe the combustion process and thermal performance for spark-ignition engines. The combustion chamber is assumed to be divided into two zones: reaction and unburned zones, where the chemical reaction takes place in the reaction zone and the unburned zone contains all the unburned mixture. In contrast to the empirical pre-determined Wiebe-function-based combustion model, an ideal two-step chemical reaction mechanism is used to reliably model the detailed combustion process such as mass-fraction-burned (MFB) and rate of heat release. The interaction between two zones includes mass and heat transfer at the zone interface to have a smooth combustion process. This control-oriented model is extensively calibrated based on the experimental data to demonstrate its capability of predicting the combustion process and thermodynamic states of the in-cylinder mixture.

This content is only available via PDF.
You do not currently have access to this content.