In redundant manipulation systems the end-effector path does not completely determine the trajectories of all the individual degrees of freedom and this freedom can be used to enhance the performance in some sense. The paper deals with utilizing the redundancy to minimize energy consumption. It extends previous results by considering more general cases of possible coupling between the axes, e.g. three axes for planar motion, and more general paths comprising of several primitive motions connected dynamically. The solution is based on projections into lower subspaces that separate the system and the input into two parts. One that is completely determined by the end-effector path and the other that is free for optimization. Simulation results show that redundancy, even with limited joint motion, can lead to a considerable reduction in energy consumption.

This content is only available via PDF.
You do not currently have access to this content.