Interaction between surge behavior and internal flow field under coexisting phenomena of surge and rotating stall was experimentally investigated. In the experiment, the tank pressure of the compressor during surge was measured to detect the effect of the back-pressure fluctuation on the change in the internal flow field. Furthermore, the rotating stall in the compressor was investigated to define the influence of an unsteady internal flow field change on the surge behavior. From the tank pressure measurements, the amplitude of the tank pressure fluctuation was found to vary depending on the cycle. A larger maximal value for the tank pressure fluctuation led to a higher flow rate where the stall inception occurred. This difference in the flow rate indicated that the stall was induced by a severe adverse pressure gradient in the compressor. Then, the absolute rate of change in the flow coefficient was increased by both a large decrease in the compressor back pressure and performance degradation from stalling. In a case where the rate of decline in the flow rate was large, the scale of the stall cell developed up to a deep stall according to the movement of the operating point. Thus, a large trajectory for the surge cycle was selected, where the unsteady operating point went through the deep stall region. This development in the scale of the stall cell suggested to be influenced by the instability of the inner flow field caused by the rapid change in the flow rate.

This content is only available via PDF.
You do not currently have access to this content.