The characteristics of a novel power split hydraulic transmission are studied in this paper. The new hydraulic transmission is built from a balanced vane pump with a floating ring. By coupling the floating ring to the output shaft, it becomes a hydraulic transmission, converting the mechanical power on the input shaft into the hydraulic power at the outlet and the mechanical power on the output shaft. By controlling the pressure at the outlet (control pressure), the power ratio transferred through mechanical and hydraulic path can be adjusted. One important feature of the new transmission is that the internal friction torque of the transmission, e.g., friction torque between vane tips and floating ring, helps to drive the output shaft whereas is wasted and turned into heat in a conventional vane pump. This increases the transfer efficiency from input shaft to output shaft. In this study, the characteristics of the input shaft torque, output shaft torque and the outlet flow rate are investigated through experimental studies. Results show that the shaft torques and the outlet flow rate are functions of control pressure and differential shaft speed. The mathematical models have been developed from the analytical and experimental results. The study provides a comprehensive understanding of the new transmission.

This content is only available via PDF.
You do not currently have access to this content.