Lean premixed combustors have been developed to meet stringent NOx emission legislation. Operating close to the lean limit introduces a susceptibility to combustion oscillations, which have a damaging impact on hardware and affect combustor performance. The RB211 DLE aero derivative gas turbine has to be CO and NOx compliant from 60% power. Therefore the required turndown must be incorporated into the design. This is achieved by the addition of a second combustion stage, which provides the required CO burn out. Combustion instabilities can occur at different primary and secondary combustion temperatures in the form of noise islands. A 1/2 wave mode has been identified at high primary zonal temperatures and occurs over a certain range of secondary zonal temperatures. This observation suggests that the secondary flame can excite or dampen the instability depending on the phase relationship between the associated dynamic pressure and the fluctuating heat release rate. The mechanism is though to be fluctuations in temperature originating from the primary flame and convecting to the secondary flame. A second mode is observed at lower primary combustion temperatures, involving the axial combustor length and the circumference of the whole combustion system. A low order thermoacoustic network has been created by Stow et al [1] for the purpose of analysing eigen modes within aero annular combustors. This low order network is used to model the RB211 DLE combustion system. It uses linear perturbation theory to predict the eigen frequencies in the combustion system. Coupling between the unsteady flow and the fluctuating heat release rate is represented by a simple transfer function in both combustion zones. Results and discussion are given for both acoustic modes encountered on the RB211 DLE combustion system.
Skip Nav Destination
ASME Turbo Expo 2004: Power for Land, Sea, and Air
June 14–17, 2004
Vienna, Austria
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
0-7918-4166-9
PROCEEDINGS PAPER
Application of Low Order Thermo-Acoustic Network to DLE Staged Combustor
M. A. Macquisten,
M. A. Macquisten
Rolls-Royce plc, Derby, UK
Search for other works by this author on:
J. A. Moran
J. A. Moran
Rolls-Royce plc, Derby, UK
Search for other works by this author on:
M. A. Macquisten
Rolls-Royce plc, Derby, UK
M. Whiteman
Rolls-Royce plc, Derby, UK
J. A. Moran
Rolls-Royce plc, Derby, UK
Paper No:
GT2004-54161, pp. 733-741; 9 pages
Published Online:
November 24, 2008
Citation
Macquisten, MA, Whiteman, M, & Moran, JA. "Application of Low Order Thermo-Acoustic Network to DLE Staged Combustor." Proceedings of the ASME Turbo Expo 2004: Power for Land, Sea, and Air. Volume 1: Turbo Expo 2004. Vienna, Austria. June 14–17, 2004. pp. 733-741. ASME. https://doi.org/10.1115/GT2004-54161
Download citation file:
30
Views
Related Proceedings Papers
Related Articles
Acoustic Resonances of an Industrial Gas Turbine Combustion System
J. Eng. Gas Turbines Power (October,2001)
An Acoustic-Energy Method for Estimating the Onset of Acoustic Instabilities in Premixed Gas-Turbine Combustors
J. Eng. Gas Turbines Power (September,2008)
Instability of a Premix Burner With Nonmonotonic Pressure Drop Characteristic
J. Eng. Gas Turbines Power (January,2003)
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Combined Cycle Power Plant
Energy and Power Generation Handbook: Established and Emerging Technologies
Experimental Investigation of Ventilated Supercavitation Under Unsteady Conditions
Proceedings of the 10th International Symposium on Cavitation (CAV2018)