A numerical and experimental study was conducted to investigate the tip clearance flow and its relationship to stall in a transonic axial compressor. The CFD results were used to identify the existence of an interface between incoming axial flow and the reverse tip clearance flow. A surface streaking method was used to experimentally identify this interface as a line of zero axial shear stress at the casing. The position of this line, denoted xzs, moved upstream with decreasing flow coefficient in both the experiments and computations. The line was found to be at the rotor leading edge plane when the compressor stalled. Further measurements using rotor offset and inlet distortion further corroborated these results, and demonstrated that the movement of the interface upstream of the leading edge leads to the generation of rotating (“spike”) disturbances. Stall was therefore interpreted to occur as a result of a critical momentum balance between the approach fluid and the tip-leakage flow.

This content is only available via PDF.
You do not currently have access to this content.