Within gas turbines the ability to design shorter aggressive S-shaped ducts is advantageous from a performance and weight saving perspective. However, current design philosophies tend to treat the S-shaped duct as an isolated component, neglecting the potential advantages of integrating the design with the upstream or downstream components. In this paper such a design concept is numerically developed in which the upstream compressor outlet guide vanes are incorporated into the first bend of the S-shaped duct. Positioning the vane row within the first bend imparts a strong radial gradient to the pressure field within the vane passage. Tangential lean and axial sweep are employed such that the vane geometry is modified to exactly match the resulting inclined static pressure field. The integrated design is experimentally assessed and compared to a conventional non-integrated design on a fully annular low speed test facility incorporating a single stage axial compressor. Several traverse planes are used to gather five-hole probe data which allow the flow structure to be examined through the rotor, outlet guide vane and within the transition ducts. The two designs employ almost identical duct geometry, but integration of the vane row reduces the system length by 21%. Due to successful matching of the static pressure field, the upstream influence of the integrated vane row is minimal and the rotor performance is unchanged. Similarly the flow development within both S-shaped ducts is similar such that the circumferentially averaged profiles at duct exit are almost identical, and the operation of a downstream component would be unaffected. Overall system loss remains nominally unchanged despite the inclusion of lean and sweep and a reduction in system length. Finally, the numerical design predictions show good agreement with the experimental data thereby successfully validating the design process.
Skip Nav Destination
ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition
June 6–10, 2011
Vancouver, British Columbia, Canada
Conference Sponsors:
- International Gas Turbine Institute
ISBN:
978-0-7918-5467-9
PROCEEDINGS PAPER
Integrated OGV Design for an Aggressive S-Shaped Compressor Transition Duct
A. D. Walker,
A. D. Walker
Loughborough University, Leicestershire, UK
Search for other works by this author on:
A. G. Barker,
A. G. Barker
Loughborough University, Leicestershire, UK
Search for other works by this author on:
J. F. Carrotte,
J. F. Carrotte
Loughborough University, Leicestershire, UK
Search for other works by this author on:
M. J. Green
M. J. Green
Rolls-Royce plc, Derby, UK
Search for other works by this author on:
A. D. Walker
Loughborough University, Leicestershire, UK
A. G. Barker
Loughborough University, Leicestershire, UK
J. F. Carrotte
Loughborough University, Leicestershire, UK
J. J. Bolger
Rolls-Royce plc, Derby, UK
M. J. Green
Rolls-Royce plc, Derby, UK
Paper No:
GT2011-45627, pp. 139-149; 11 pages
Published Online:
May 3, 2012
Citation
Walker, AD, Barker, AG, Carrotte, JF, Bolger, JJ, & Green, MJ. "Integrated OGV Design for an Aggressive S-Shaped Compressor Transition Duct." Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. Volume 7: Turbomachinery, Parts A, B, and C. Vancouver, British Columbia, Canada. June 6–10, 2011. pp. 139-149. ASME. https://doi.org/10.1115/GT2011-45627
Download citation file:
59
Views
Related Proceedings Papers
Related Articles
Identifying Faults in the Variable Geometry System of a Gas Turbine Compressor
J. Turbomach (January,2001)
Millimeter-Scale, Micro-Electro-Mechanical Systems Gas Turbine Engines
J. Eng. Gas Turbines Power (April,2004)
Measurements of the Flow Field Within a Compressor Outlet Guide Vane Passage
J. Turbomach (January,1995)
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Performance Testing of Combined Cycle Power Plant
Handbook for Cogeneration and Combined Cycle Power Plants, Second Edition