It is well-known that the vibrational behavior of a mistuned bladed disk differs strongly from that of a tuned bladed disk. A large number of publications dealing with the dynamics of mistuned bladed disks is available in the literature. The vibrational phenomena analyzed in these publications are either forced vibrations or self-excited flutter vibrations. Nearly all published literature on the forced vibrations of mistuned blades disks considers harmonic, i. e. steady-state, vibrations, whereas the self-excited flutter vibrations are analyzed by the evaluation of the margin against instabilities by means of a modal, or rather than eigenvalue, analysis. The transient forced response of mistuned bladed disk is not analyzed in detail so far. In this paper, a computationally efficient mechanical model of a mistuned bladed disk to compute the transient forced response is presented. This model is based on the well-known Fundamental Model of Mistuning. With this model, the statistics of the transient forced response of a mistuned bladed disk is analyzed and compared to the results of harmonic forced response analysis.

This content is only available via PDF.
You do not currently have access to this content.