An increase in the penetration of renewables generated electricity has technical and economic impacts on power transmission systems because of the renewables’ variable characteristics. However, due to concerns of energy security, operational information of power infrastructure is scarce, making it challenging for policy-makers and independent power producers to assess these systems for the development of new energy projects. This paper presents an analysis of Germany’s power generation and transmission infrastructure using integrated, geographically-indexed production, demand and grid models. The paper assesses the impact of growth of renewables on Germany’s grid in a scenario of slow growth of grid infrastructure to show that the length of transmission lines needing reinforcement increases from 650 km in 2011 to 1090 km in 2020, if Germany’s transmission grid is to keep pace with the increased penetration of renewable energy. Mesoscale model simulations of the weather are used in the year 2020 scenario to assess the economic development of the competing renewables — wind and solar — in relation to the available grid capacity. It is shown that if the grid development lags the development of then targeted 35% renewables portfolio, then 6.5% of generated power by wind and solar energy will face risk of curtailment.

This content is only available via PDF.
You do not currently have access to this content.