This paper is meant to contribute a further investigation of the dynamic characteristics of the bladed disks with piezo-network and piezo-shunt circuit. The non-engine-order (NEO) excitation is taken into account from a practical point of view, and the mechanisms of vibration suppression of the two electromechanical systems are explained by means of the modal analysis and the energy analysis. First of all, the dynamic equations are derived based on a lumped parameter electromechanical model, and a normalizing process is used to make the analysis results more general. After the modal analysis of the electromechanical systems, the vibration suppression effect is analyzed when the bladed disk is excited by the engine-order (EO) excitation and the NEO excitation respectively. Then, an energy analysis of the electromechanical systems is performed to understand the dynamic behaviors of the systems better. Finally, the effect of reducing the amplitude magnification of the mistuned bladed disk is investigated. The research results turn out that the electrical natural frequencies (induced by electrical elements) of the system with piezo-shunt circuit are dense, while those of the system with piezo-network are not. When the system is excited by an EO excitation, the energy dissipated by resistors in the shunt circuit is slightly more than that in the network. However, the former is much less than the latter when the system is excited by an NEO excitation. A statistical analysis has been performed and proved that both the piezo-shunt circuit and the piezo-network can compensate the amplitude magnification of the forced response induced by mistuning, and the piezo-network has a better performance when the bladed disk is excited by an NEO excitation.

This content is only available via PDF.
You do not currently have access to this content.