This paper reports results of experimental and numerical investigations on ethane-air two-stage combustion in a counterflow burner where the fuel stream, which is partially premixed with air for equivalence ratios from 1.6 to 3.0, flows against a pure air stream. Similar to methane, the two-stage ethane combustion exhibits a green fuel-rich premixed flame and a blue diffusion flame. Flame structures, including concentration profiles of stable intermediate species such as C2H4, C2H2 and CH4, are measured by a gas chromatography and are calculated by numerical integrations of the conservation equations employing an updated elementary chemical-kinetic data base. The implications of the results from these experimental measurements and numerical predictions are summarized, the flame chemistry of ethane two-stage combustion at different degrees of premixing (or equivalence ratio) is discussed, and the relationship between NOx formation and the degree of premixing is established. The present work helps to increase understanding of flame chemistry of hydrocarbon fuels, identify important reactions for pollutant formation and suggest means to reduce emissions.

This content is only available via PDF.