A porous particle bed consisting of core debris may be formed as a result of a core melt accident in a nuclear power plant. The coolability of conical (heap-like) and cylindrical (evenly-distributed) ex-vessel debris beds have been investigated in the COOLOCE experiments at VTT. The experiments have been modeled by using the MEWA severe accident analysis code. The main objectives of the modeling were (1) to validate the simulation results against the experiments by comparing the dryout power density predicted by the code to the experimental results and (2) to evaluate the effect of geometry on the coolability by examining the flow field and the development of dryout in the two geometries. In addition to the MEWA simulations, 3D demonstration calculations of the particle bed dryout process have been performed using the in-house code PORFLO. It was found that the simulation and experimental results are in a relatively good agreement. The results suggest that the coolability of the conical debris bed is poorer than that of the cylindrical bed due to the greater height of the conical configuration.

This content is only available via PDF.
You do not currently have access to this content.