The Steam injection through multi-hole spargers into the pressure suppression pool (PSP) is used in light water reactors to prevent containment over-pressure. The development of thermal stratification in the PSP can reduce its cooling capacity and results in higher containment pressures compared to completely mixed pool conditions. Explicit modelling of direct contact condensation (DCC) of steam at the steam-water interface is a challenge for contemporary codes. Effective Heat Source (EHS) and Effective Momentum Source (EMS) models have been proposed to enable the prediction of thermal stratification and mixing transients induced by steam condensation in a large pool. The general idea of the EHS/EMS is to resolve the effect of the DCC phenomena on a large pool, instead of explicit modelling of the small-scale phenomena at steam-water interface.

The EHS/EMS models can be implemented using (i) respective boundary conditions at the boundary of the Steam Condensation Region (SCR) or (ii) using source terms in the heat and momentum transport equations. In previous work, EHS/EMS models were implemented using the second approach and validated against data from PPOOLEX and PANDA tests. It was found that results are sensitive to the spatial distribution of the source terms. Since the current data are not sufficient to provide a reasonable distribution, a preliminary study of the first method was done in this paper.

The goal of this work is to develop a ‘Unit Cell’ model by using respective boundary conditions for steam injection through multi-hole sparger. The condensed turbulent jet is resolved by introducing the liquid jet with the same effective momentum and heat as the injected steam. A uniform velocity profile solved by EMS model and the temperature boundary solved by EHS model is provided on each injection hole of the sparger wall. Validation is conducted against sparger test in PANDA facilities.

This content is only available via PDF.
You do not currently have access to this content.