Intermediate heat exchangers are one of the most critical devices in the safety of facilities with very high temperature nuclear reactors. In this application, the printed circuit heat exchanger (PCHE) design has been the one that has shown the greatest advantages in terms of heat transfer, compaction and structural strength. In this work, a thermal-hydraulic and mechanical model of the PCHE was developed using computational fluid dynamics (CFD) techniques and finite element methods, respectively. The CFD model was validated by comparison with experimental data and empirical correlations of Nusselt number and friction factor published by other authors. A methodology was proposed to evaluate the operation of the exchanger based on the analysis of capital and operating costs. As a relevant aspect of this methodology, the relationship between the maximum Von Misses stress in the structure and the time of operation was considered. In the structural calculations it was observed that increasing the temperature gradient between the channels caused by the increase of the mass flows of gases, causes the displacement of the solid region and the maximum stress increase. The Taguchi method was applied to identify the dimensions that have the greatest influence on the operation of the PCHE and to obtain an optimized design of the device.

This content is only available via PDF.
You do not currently have access to this content.